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1 Introduction

The determinants of tacit collusion in oligopolies have been studied since the very onset

of experimental economics (see Sauermann and Selten, 1959, and Fouraker and Siegel,

1963). One robust finding from this literature is that markets with fewer firms tend to

become more collusive (Huck et al., 2004, Horstmann et al., 2018). However, the previ-

ous literature did not study whether the group size effect is driven by easier coordination

among fewer firms, or because in such markets each firm has more individual incentives

to restrict output. We demonstrate the viability of the incentive-based explanation by

showing that in smaller groups, firms have weaker incentives to deviate from collusive

agreements and bounded rationality predicts more collusive behavior. We test this pre-

diction by designing and running a Cournot oligopoly experiment in which the incentives

to collude and the salience of choices are invariant to group size. By comparing the group

size effect in our new design to the standard Cournot treatments, we can identify whether

the group size effect is driven directly by the number of firms, or instead by the changes

in incentives or salience that go with it.

Understanding whether collusion is driven by the group size itself (“coordinated ef-

fects”) or by the changes in incentives (“unilateral effects”) or salience is important for

regulators to identify the potentially collusive markets and assess the consequences of an-

titrust policies (Levenstein and Suslow, 2006). Up until the end of the twentieth century,

regulators aimed to curb market concentration, measured either by the number of signif-

icant competitors in the market or using the Herfindahl-Hirschman Index.1 Recently, the

focus shifted towards the economic factors that affect the incentives to collude (Shapiro,

2010) and it has been debated whether an indicator of upward pricing pressure should re-

place the concentration-based methods (Farrell and Shapiro, 2010; Jaffe and Weyl, 2013).

When making a recommendation on whether mergers should be screened based on co-

ordinated or unilateral effects, regulators need to know whether market concentration

facilitates collusion. Since obtaining empirical data about collusion is difficult (Davies

et al., 2011), some regulators started to rely on experimental evidence. For example,

the UK regulator recently suggested that more attention should be paid to coordinated

effects, based partly on the recent experimental evidence (Olsen and Schwarz, 2022).2

Identifying whether collusion is driven purely by the group size would help the regulators

1See Davies et al. (2011), Farrell and Shapiro (1990) and U.S. Department of Jus-
tice & Federal Trade Commission, Horizontal Merger Guidelines (2010), available at
http://www.justice.gov/atr/public/guidelines/hmg-2010.pdf

2In the most recent 2021 version of the Merger Assessment Guidelines, the Competition and Market
Authority (CMA) added that “coordinated effects have been considered by the CMA relatively infre-
quently in the past”, but CMA is considering to strengthen enforcement in that area due to evidence
that “coordination in concentrated markets is common and has the effect of restricting competition and
raising prices”. As evidence, CMA cites Baker and Farrell (2020) who in turn draw the conclusion
about the small number of firms facilitating collusion in large part based on the experimental economics
literature.
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decide whether they should strive to keep markets unconcentrated, or instead focus on

measuring and limiting the incentives to collude.

In the experimental treatments that were designed to keep the incentives and salience

invariant to the group size, we find that the group size has no effect on the aggregate mea-

sures of collusion. In contrast, treatments that used the standard Cournot payoff function

reproduced the common pattern of more collusion in smaller groups. We therefore con-

clude that the group size effect, documented in the previous literature, is not driven by

easier coordination in smaller groups. Our results suggest that antitrust policies that

limit market concentration might fail to increase competitiveness, and regulators might

have rightly switched to assessing how mergers change the incentives to collude.

Although group size does not affect average output or profits, we find greater variance

of output in smaller groups, thus more choices are classified as collusive – but also as

competitive. Interestingly, this effect is not found in the treatments with the standard

Cournot payoff function. The difference could be explained by how the output of the

opponents is aggregated. In our normalized treatments, payoffs depend on the average

output of other firms, which is more stable in markets with many firms and thus choosing

very high or very low output rarely maximizes profits. The change in stability does not

occur in standard Cournot treatments, where payoffs depend on the total output that does

not become more stable in larger groups. We formalize these arguments by developing

a modified version of QRE, in which choice probabilities depend on the likelihood that

an action is the best response. We show that this solution concept fits data better than

QRE and can explain increased variance in smaller groups.

Our study extends the results from the previous experiments in Cournot oligopoly,

where output is typically found to be more collusive in markets with fewer firms. Fouraker

and Siegel (1963) found slightly more collusive behavior in Cournot duopolies than in tri-

opolies. Huck et al. (2004) found that average output is more collusive and more markets

are classified as collusive in duopolies than quadropolies. Roux and Thöni (2015) repli-

cated these results in baseline treatments without punishment. Waichman et al. (2014)

found a higher frequency of collusion counts in duopolies than in triopolies when commu-

nication was not possible, although the effect was not significant in the manager sample.

Similarly, Fonseca et al. (2018) found an increase in the collusiveness of output when the

number of firms decreased from six to four and from four to two, in treatments without

communication. In quadropolies without a forward market, output was more compet-

itive than the equilibrium prediction, but more collusive than equilibrium in duopolies

(Le Coq and Orzen, 2006). Van Koten and Ortmann (2013) also ran baseline treatments

without a forward market and found that output was more competitive than the equi-

librium prediction in quadropolies, but not in triopolies or duopolies. Horstmann et al.

(2018) found that duopolies were more collusive than triopolies, which in turn were more

collusive than quadropolies, as measured using two collusion indexes. Horstmann et al.
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(2018) also performed a meta-analysis of previously published results and found higher

rates of tacit collusion in duopolies than in triopolies or quadropolies.3

Increased collusiveness in smaller groups is also found in Bertand oligopoly experi-

ments. Fouraker and Siegel (1963), Dufwenberg and Gneezy (2000), Orzen (2008), Davis

(2009) and Fonseca and Normann (2012) found less competitive behavior and higher

profits in Bertrand duopolies, compared to triopolies or quadropolies. A meta-analysis

and additional experiments in Horstmann et al. (2018) corroborate these results.

More generally, we contribute to the recent experimental literature that studies how

behavioral regularities depend on the number of interacting participants (Diederich et al.,

2016, Choi et al., 2020, Arifovic et al., 2022). We contribute to this research by designing

a method to identify the mechanism behind the group size effect, which needs to be

understood to draw policy implications from this line of research. We show that group

size can change the incentives in a non-trivial way, which can be modeled using models

of bounded rationality and controlled using a payoff function that keeps the incentives

similar across different group sizes. We are aware of only one other paper that studied the

mechanism behind the group size effect: Isaac and Walker (1988) noticed that in public

goods games, an increase in group size would decrease the marginal per capita return of

contributions to a public good. A change in the group size could therefore be divided into

a “pure” group size effect and the part of the effect driven by the changes in incentives

to contribute. Isaac and Walker (1988) observed a significant decrease in contributions

when the group size was increased from 4 to 10. However, the effect disappeared when

the payoff function was corrected to keep MPCR constant across group sizes.4 Similarly,

we find a decrease in the group size effect in Cournot oligopoly when the payoff function

is normalized to keep the incentives comparable.

The rest of the paper is organized as follows. Section 2 presents our design: payoffs and

theoretical predictions in Cournot oligopoly (Section 2.1), discussion of the mechanism

behind the group size effect (Section 2.2), design of the normalized treatments and how

they differ from standard treatments (Section 2.3) as well as other implementation details

(Section 2.4). Section 3 shows how the Quantal Response Equilibrium can be used to

measure the differences in incentives to collude and finds that a decrease in group size

increases such incentives in the standard treatments, but not in the normalized ones.

Section 4 presents the results of the experiment: in standard treatments, we replicate the

results from previous literature, but in the normalized treatments, we do not find that

3A slightly different design was used by Friedman et al. (2015), who compared Cournot duopolies
to triopolies with a unit elastic demand function in a low information environment and 1200 4-second
rounds. By the end of the game, output converged to the collusive outcome in the duopoly, but not in
the triopoly. Oechssler et al. (2016) replicated the study using a standard linear demand function and
found more collusive behavior in duopolies than in quadropolies.

4Follow-up studies found that the group size may have a significant effect, although it depends on the
value of MPCR and the nature of the game; for example, see Isaac et al. (1994), Barcelo and Capraro
(2015), Nosenzo et al. (2015), Zelmer (2003).
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smaller groups become more collusive (Section 4.1), although in these groups we observe

increased variance of output (Section 4.2). Section 5 attempts to explain these results,

showing that QRE can explain the results about the average output, but not the change

in the variance (Section 5.1), which can instead be explained by a modification of QRE

that takes into account the best-response likelihood (Section 5.2). Section 6 concludes

and discusses the implications of our results for competition policy and for the research

on the group size effects.

2 Experimental Design

2.1 Payoffs and Key Outcomes

We study a symmetric n-firm Cournot oligopoly. Each firm i P N simultaneously chooses

output qi. Price pi is determined by a linear inverse demand function:

pipqi, q´iq “ max

¨

˝0, 81´

¨

˝qi ` θ
ÿ

jPpNziq

qj

˛

‚

˛

‚ (1)

where q´i denotes the vector of outputs by firms other than i.

The sole difference compared to the standard Cournot oligopoly implementation (e.g.

Bigoni and Fort, 2013, Huck et al., 2004) is the addition of θ, which could be interpreted

as the degree of product differentiation (Vives, 1984, Horstmann et al., 2018). If θ “ 1,

as is commonly assumed, products are homogeneous and the market price is common for

all firms.

We assume that the marginal cost of production is equal to one, so that the cost

function is Cpqiq “ qi. We also added a fixed cost (FC) and scaled the payoffs using

parameter s to make the games with different group sizes more comparable with each

other. Then profits earned by i are:

πipqi, q´iq “ ppipqi, q´iqqi ´ qiqs´ FC

Three key outcomes are typically studied in Cournot oligopoly games: collusive out-

come, at which the sum of payoffs earned by all players is maximized; Nash equilibrium,

at which all players best-respond to the action profile of everyone else and Walrasian equi-

librium, at which all players maximize their relative profits. We calculate the symmetric

outcomes of interest using the standard procedure. Individual output in a symmetric

Nash equilibrium is qNi “
80

2`θpn´1q
, in a symmetric collusive outcome it is qCi “

80
2`2θpn´1q

and in a symmetric Walrasian equilibrium5 it is qWi “ 80
1`θpn´1q

. There sometimes are

5With the parameters used in the experiment, the Walrasian equilibrium is at the point where price
equals marginal cost. In general, the symmetric relative payoff maximization point could be different for
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asymmetric collusive outcomes and asymmetric Nash equilibria; in all asymmetric Nash

equilibria, the total output is equal to the total output produced in the symmetric equi-

librium.6

2.2 Group Size Effect

We designed the experiments to clarify the mechanism behind the group size effect ob-

served in the previous Cournot literature. Based on the previous findings and the insights

from competition policy, we identify three potential mechanisms that could explain why

output is more collusive in smaller groups:

1. In smaller groups, it is easier to coordinate. Regulators seek to limit market

concentration partly due to a belief that “the presence of many competitors tends

to make it more difficult to sustain coordination (...)”.7 This belief is supported

by the results from economic experiments. Smaller groups manage to coordinate

on higher prices and receive higher profits in Bertrand oligopoly (Dufwenberg and

Gneezy, 2000; Davis, 2009; Fonseca and Normann, 2012), coordinate on the efficient

equilibrium in a minimum effort game (Van Huyck et al., 1990) and sustain coop-

eration in voluntary contribution mechanism games (Nosenzo et al., 2015). The

success of smaller groups could be explained by the use of “language of coordina-

tion” (Davis, 2009), which allows participants to signal their intentions to collude

and identify deviations from collusive agreements (Masiliūnas, 2017). We call this

explanation the “pure group size effect” (following Isaac and Walker, 1988), as it is

driven directly by the group size, rather than by the change in incentives or other

elements of the game.

2. In smaller groups, there are more incentives to collude or less incentives

to deviate from collusive agreements. In competition policy, mergers are ex-

pected to increase the individual incentives to increase prices, commonly measured

using the value of diverted sales or an index of upward pricing pressure (Shapiro,

2010, Farrell and Shapiro, 2010). This “unilateral effect” is typically explained by

the merged firm having more incentives to raise prices because some of the sales lost

due to a higher price can be recaptured by selling more substitute products (Jaffe

small values of θ, i.e. if θpn´ 1q ă 1.
6In the normalized treatments with the parameters used in the experiments and a discrete strategy

space, there are 4 asymmetric equilibria in markets with two firms: (7,9), (9,7), (0,16), (16,0). There
are 18 asymmetric equilibria in markets with three firms and 18 in markets with four firms. The average
output is the same in all equilibria. Multiplicity of equilibria is common in a Cournot oligopoly: for
example, in the standard treatments, there are 2 asymmetric equilibria in two-firm markets, 6 equilibria
in three-firm markets and 18 equilibria in four-firm markets.

7U.S. Department of Justice & Federal Trade Commission, Commentary on the Horizontal Merger
Guidelines (2006), available at http://www.justice.gov/atr/public/guidelines/215247.pdf. Also see Ivaldi
et al. (2007).
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and Weyl, 2013). A similar effect is present in Cournot oligopoly, where firms in

larger groups have more incentives to deviate from the collusive agreements. The

incentives to collude are commonly compared using the Friedman index, which

is connected to the minimum discount factor needed to sustain collusion in an

infinitely repeated game (Friedman, 1971). The index predicts that collusive agree-

ments should be more stable in smaller groups, due to less incentives to deviate

from such agreements. Our experiment follows the previous literature and uses

finitely repeated games, therefore collusive equilibria do not exist; however, we use

the Quantal Response Equilibrium predictions to show that changes in incentives

still predict more collusive output in smaller groups.

3. In smaller groups, more choices are classified as collusive because the

collusive outcome is closer to the salient options. Preferences and beliefs

depend on the choice set and item’s location in the set; for example, there is a

preference for options in the middle (Valenzuela and Raghubir, 2009; Chang and

Liu, 2008) or for the multiples of 10 or 100. In standard Cournot oligopoly, the

salience of the key outcomes, their location on the strategy space and the distance

between them change in response to the group size. These changes could affect the

behavior of boundedly rational participants and therefore more choices might be

misclassified as collusive in smaller groups.

2.3 Treatments

We separate the pure group size effect from the explanations based on incentives or

salience by comparing the effect in “standard” Cournot treatments to “normalized” treat-

ments, where the incentives and salience do not vary with group size. We expect that

the standard treatments will replicate the well-known finding of more collusive output

in smaller groups, and test whether the group size effect is reduced in normalized treat-

ments. We used the same subject pool and experimental procedures in all treatments to

ensure that the differences are not driven by other factors.

In total, we ran two standard treatments (with the group size of 2 and 4) and three

normalized treatments (with the group size of 2, 3 and 4). The additional three-group

treatment was added to better understand the group size effect in the novel normalized

design. Table 1 summarizes the key differences between the five treatments. The main

difference between standard and normalized treatments lies in how the output of the

opponents is aggregated, which is determined by the θ parameter. In standard treatments,

we set θ “ 1, regardless of the group size, as is common in the previous literature (e.g.

Huck et al., 2004, Roux and Thöni, 2015, Horstmann et al., 2018, Oechssler et al., 2016).

As a result, a change in the group size does not affect the profit of firm i if the output
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Table 1: Parameter values (n, θ, s, FC), strategy space, output in the three key out-
comes (collusive outcome, Nash equilibrium and Walrasian equilibrium), payoffs in these
key outcomes (in ECU), incentives to collude (Friedman index) and the number of ob-
servations in the experiments (number of participants and markets) in each treatment.

Treatment S2 S4 N2 N3 N4
n 2 4 2 3 4
θ 1 1 3 1.5 1
s 0.36 1 1 1 1
FC -130 -130 -130 -130 -130
Strategy space 0-50 0-50 8-24 8-24 8-24
qCi 20 10 10 10 10
qNi 26.67 16 16 16 16
qWi 40 20 20 20 20
πpCq 418 530 530 530 530
πpNq 386 386 386 386 386
πpW q 130 130 130 130 130
Friedman index 0.89 0.64 0.64 0.64 0.64
# participants 36 60 96 72 96
# markets 18 15 48 24 24

of firm i and the sum of output of all other firms are held constant.8 In normalized

treatments, we set θ “ 3
n´1

, therefore the group size does not affect the profits of i if

the output of i and the average output of all other firms are held constant. This small

difference in the aggregation of opponents’ output has important consequences on how

the incentive structure responds to changes in group size.

In the standard treatments, group size affects the output and payoffs in the three key

outcomes: Nash equilibrium, collusive outcome and Walrasian equilibrium. The first two

columns of Table 1 summarize these differences in treatments with two and four firms

(S2 and S4). Nash equilibrium payoffs are held constant using a scaling parameter (s “ 1

in S4, s “ 0.36 in S2), but the payoffs in the collusive outcome and the most profitable

deviation from it are different. The incentives to collude are commonly measured using

the Friedman index (Friedman, 1971), defined as F “
πpCq´πpNq
πpDq´πpCq

, where πpDq is the

payoff from the most profitable unilateral deviation from the collusive outcome. Friedman

index shows that a larger group size reduces the incentives to collude in the standard

treatments, but not in the normalized treatments,9 where the payoffs at each outcome

and the locations of these outcomes are invariant to group size.

The second difference between standard and normalized treatments is in the strategy

space. In standard treatments, firms could choose output from 0 to 50. In normalized

treatments, the strategy space was restricted to 8-24, for several reasons. First, we wanted

8Note that the payoffs are held constant by appropriately setting the s parameter in the two treat-
ments.

9Friedman index values in our experiment are identical to the values in standard experiments that
manipulated group size in Cournot oligopoly, e.g. Huck et al. (2004).
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to evenly space out the three key outcomes across the strategy space to improve the

accuracy of categorization. If all three outcomes are located at the bottom of the strategy

space (e.g. as in S4), there is more scope for exceeding the equilibrium prediction and we

might underestimate the degree of collusion. Instead, in normalized treatments, the Nash

equilibrium was placed in the middle of the strategy space and the other two outcomes

were located at a similar distance from it. Furthermore, none of the key outcomes were

located at the either end of the strategy space, so as not to misclassify extreme choices

as either perfectly collusive or perfectly competitive. It was also necessary to bound the

strategy space from below to decrease the possibility of collusion by an alternating play

of asymmetric outcomes.10

Finally, the strategy space in normalized treatments was labeled such that the key

outcomes would not be salient. For example, in S4 treatment, the collusive and competi-

tive outcomes are at salient locations (respectively 10 and 20), and previous studies that

used the same parametrization found that these outcomes are commonly chosen (Bigoni

and Fort, 2013). It is unclear whether these values were chosen because they were salient,

or because participants converged to the collusive or competitive outcome. To simplify

the explanation of the game and reduce the salience of the key outcomes, we re-labeled

the strategy space, using numbers 0-16 to represent output 8-24. The mapping was per-

formed in two ways: in “increasing” treatments, higher output was represented by higher

numbers in the strategy space (i.e. output of 8 was labeled as “0” and 24 was labeled as

“16”). In “decreasing” treatments, higher output was represented by lower numbers (i.e.

output of 8 was labeled as “16” and 24 was labeled as “0”), reversing the strategy space.

This labeling ensures that the key outcomes are never at salient locations (in increasing

treatments, key outcomes are at 2, 8 and 12; in decreasing treatments they are at 4, 8

and 14). Running the some treatments with a reversed strategy space helps to further

evaluate the importance of salience and to eliminate its effect when classifying choices

(for more details, see Appendix A).11 In the data analysis section, we map the choices

made by participants back into the output of the original Cournot payoff function and

10In N2, the symmetric collusive outcome is (10,10), generating a payoff of 530 ECU per firm. However,
total payoffs would be maximized in the output profile (8, 16), with an average payoff of 546 EU per firm.
In N3, the asymmetric collusive outcome is (8, 8, 16), with a profit of 535.33 EU per firm. In N4, all
output profiles in which total output equals 40 generate the same payoff of 530 ECU per person. If the
strategy space was not bounded from below, the payoff difference between symmetric and asymmetric
collusive outcomes would be much larger, and cause different patterns of behaviour in markets with two
and four firms. For example, the asymmetric collusive outcome in an unbounded two-firm treatment
is (4, 24), with a payoff of 810 ECU per person. The lower limit of 8 makes the asymmetric collusive
outcome less attractive, while keeping the symmetric collusive outcome in the interior of the strategy
space. To completely eliminate the asymmetric collusive outcome, the lowest available output would
have to be 10. In the data, we do not observe any successful attempts of asymmetric collusion.

11We find evidence that salient outcomes are more commonly chosen. For example, action labeled as
“10” is the most commonly chosen action in N3I (increasing treatment with a group size of 3), second
most common in N4I and N3D, third most common in N2I, N2D and N4D. When the same action is
labeled as “6”, it is chosen less than half of the time. If we hadn’t run the treatments with a reversed
strategy space, the frequency of competitive outcomes would likely be overestimated.
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pool increasing and decreasing treatments.

2.4 Other Design Details

The stage game was repeated 20 times under partner matching. An alternative random

matching protocol would have made it very difficult to study collusion. Each participant

had 30 seconds to make a decision in each round (as in Bigoni and Fort, 2013). If no

decision was made within the time limit, the output chosen in the previous round was

implemented. If no decision was made in the first round, output was randomly drawn

from a uniform distribution.12

The original instructions were in French; Appendix E provides a complete English

translation. Instructions were identical in all treatments and framed using neutral lan-

guage.13 Participants could learn about the incentive structure using either a payoff table

or a payoff calculator (examples of the information seen by the participants are displayed

in figures G.1 and G.2 in Appendix G). The payoff table listed participant’s payoffs for

some combinations of chosen output and the average output of the opponents: 441 com-

binations in standard treatments (21x21 action profiles, 0-50 in increments of 2.5) and

289 combinations in normalized treatments (17x17 action profiles, 0-16 in increments of

1). The payoff calculator could be used to compute the payoff for any combination of

own output and the average output of the opponents.

In each round other than the first one, participants had access to two additional

tools. The “output-payoff graph” visually displayed the previous round output-payoff

combinations of all participants in the group (see Friedman et al., 2015 for a similar

design). This information is needed for the imitate-the-best dynamics, which converges

to the Walrasian equilibrium (Vega-Redondo et al., 1997). The second tool was a table

that listed the history of player’s chosen output and payoffs, as well the average output

of the other group members in all previous rounds. This information is needed to make

decisions from experience (e.g. reinforcement or belief learning). Participants could

switch between the four tools at any time, and we tracked how much time was spent

using each tool, just as in Bigoni and Fort (2013). This process data provides additional

insight into how the decision making process is affected by the group size.

We set the fixed cost to FC “ ´130, providing a subsidy that prevents negative

payoffs and generates positive payoffs in the Walrasian equilibrium.14 We used the s

12The decision was not made within the time limit 3.5% of the time, primarily in the first two rounds.
In the analysis part, we use all the decisions, although excluding the decisions that were not made
explicitly does not change the overall results.

13For a discussion about how the use of neutral language rather than the more commonly used economic
framing affects preferences and beliefs in Cournot oligopoly, see Masiliūnas and Nax (2020).

14The choice of the scaling parameters and the strategy space also ensure that in the normalized
treatments all the payoffs are three-digit numbers (i.e. within the range 100-999), therefore no part of
the payoff space is particularly salient.
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parameter to scale the payoffs to equalize equilibrium payoffs across games with a different

number of firms (see Table 1). In previous research, a change in equilibrium payoffs due

to a different group size was corrected using different exchange rates (e.g. Huck et al.,

2004, Bosch-Domènech and Vriend, 2003). Instead, we use an explicit scaling parameter

to increase the transparency and keep the payoffs in the same order of magnitude across

treatments, preventing any treatment effects due to the salience of payoffs.

After 20 rounds, participants continued the experiment with different games for an-

other 20 or 40 rounds (depending on the treatment). This data was collected to study

learning transfer and is used in a separate paper. Table D.1 in Appendix D shows the

structure of the entire experiment. In this paper, we use only choices from the first 20

rounds. Participants were aware that the experiment will contain multiple parts, but did

not know how many parts there will be and what type of games will be played. In each

part, participants were matched with different opponents, therefore they never interacted

with their opponents from the first part again. One round from each part was randomly

selected at the end of the experiment, and the earnings from these rounds were added up

and paid in cash.15

Additional information was collected at the end of the experiment. We elicited social

preferences using the Social Value Orientation slider measure (Murphy et al., 2011, using

the z-Tree implementation by Crosetto et al., 2019). We also measured the cognitive

abilities using a part of the advanced version of Raven’s Progressive Matrices task (Raven

and Court, 1998). In this test, participants had 10 minutes to solve 16 tasks. After these

tasks, we collected the age, gender and year of study of the participants.

In total, 360 participants took part in the experiments. The number of participants

and markets in each treatment is shown in Table 1. In normalized treatments, exactly one

half of the participants in each treatment took part in “increasing” treatments and the

other half in “decreasing” treatments. We collected more observations for the normalized

treatments because the standard treatments have already been studied in the previous

literature.

All experiments were run in the LEEN laboratory of the Université Côte d’Azur in

May and October 2018. The experiments took on average 75 minutes and participants

on average received 14.2 euros. Participants were recruited using ORSEE (Greiner, 2015)

and experiments were programmed using z-Tree (Fischbacher, 2007).

3 Quantal Response Equilibrium Predictions

We have shown that the normalization of the payoff function equalizes the payoffs in the

three key outcomes. In this section, we further quantify the predicted group size effect in

15Earnings were denominated in ECU and exchanged to cash using rate 150 ECU = 1 euro.
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the standard and normalized treatments. We model bounded rationality using Quantal

Response Equilibrium (McKelvey and Palfrey, 1995), which is sensitive to the incentives

and the locations of outcomes.

QRE requires consistency between actions and beliefs, but the responses to beliefs

are noisy, therefore all actions are chosen with positive probability. In a game with n

players, a set of players N , and a set of pure strategies Qi “ tq1, . . . , qmu, denote the set

of all probability measures on Qi by ∆i and the set of all probability measures on ˆiQi

by ∆ “ ˆi∆i. We will use shorthand notation p “ ppi, p´iq for any p P ∆, where pi is

the mixed strategy of player i and p´i is the mixed strategy profile of all other players.

The probability with which player i chooses action qk is pipqkq. The expected payoff

that i obtains by choosing qk is denoted by πipqk, p´iq. Nash equilibrium assumes that

each player chooses the action with the highest expected payoff. Instead, QRE assumes

that participants are maximizing their decision utility uipqk, p´iq, equal to the sum of the

expected payoff and the noise term:

uipqk, p´iq “ πipqk, p´iq ` εik (2)

If each of the stochastic terms εik is independently drawn from a type-I extreme value

distribution with parameter λ (McFadden, 1981) and each player chooses the action that

generates the highest decision utility, the probability that i will play qk can be calculated

using a noisy best-response function σipqk, p´iq, defined as:

σipqk, p´iq “
eλπipqk,p´iq

ř

qjPQi
eλπipqj ,p´iq

(3)

The logit QRE is a probability distribution p P ∆ that satisfies pipqkq “ σipqk, p´iq,

for all i P N and qk P Qi (McKelvey and Palfrey, 1995). In other words, QRE requires the

mixed strategy of each player to be a noisy best-response to the mixed strategy profile

used by all other players.

Parameter λ measures precision, or sensitivity to expected payoff differences. If λ “ 0,

all actions are chosen with equal probabilities. A positive λ indicates that actions that

generate higher expected payoffs are chosen more often. If λÑ 8, there is no error and

players always choose the action with the highest expected payoff, therefore QRE reduces

to the Nash equilibrium.

Since the closed-form expressions of logit QRE are generally unknown, we calculate

QRE using the tracing procedure from Turocy (2005), implemented using Gambit soft-

ware (McKelvey et al., 2015). The calculations are performed using a discretized strategy

space of 51 strategies (0, 1, . . . , 50) in standard treatments and 17 strategies (8, 9, . . . , 24)

in normalized treatments. Payoffs used in the calculations are converted into monetary

euro amounts (in experiments, the exchange rate was 150 ECU = 1 euro).
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Figure 1: QRE distribution with λ “ 1.5 in standard treatments. Vertical dashed lines
indicate Nash equilibrium in S4 (16) and S2 (26.7).

3.1 QRE in Standard Treatments

We start by evaluating how QRE predictions respond to changes in group size in standard

treatments and move to the normalized treatments in Section 3.2. First, we illustrate

the QRE predictions by calculating the choice probabilities for a specific value of the

precision parameter (λ “ 1.5, which is close to the value in the best-fitting QRE model

estimated in Section 5.1) and then show how these predictions change in response to the

precision parameter.

Figure 1 shows the calculated QRE probability distributions in treatments S2 and S4.

Both distributions are centered around the Nash equilibrium, but more choices exceed the

Nash equilibrium prediction in S4 than in S2 (59%, compared to 51%), largely because

the equilibrium prediction is lower in S4 than in S2 (16 instead of 26.7), thus there are

more actions above than below it. Consequently, the average QRE output is much higher

than the Nash equilibrium in S4 (20.6, compared to 16) but is very close to it in S2 (26.8,

compared to 26.7).

We quantify the degree of collusion using two measures, and compare them across a

range of the precision parameter. The first measure is the ratio of average output to Nash

equilibrium output (Huck et al., 2004), calculated as r “ q̂pλq
qN

, where q̂pλq is the average

output in a QRE with parameter value λ, and qN is the Nash equilibrium prediction.

Figure 2 plots r in S2 and S4 for values λ P r0, 10s. If the sensitivity to payoff differences

is high, QRE approaches Nash equilibrium and thus r Ñ 1. If the sensitivity is low,

average output is below Nash equilibrium in two-firm markets and above it in four-firm

markets, predicting more collusive output in markets with fewer firms.

The second measure is the frequency of collusive or competitive choices. We follow a

common procedure (e.g. see Huck et al., 2004) and classify chosen output by the closest

key outcome. Specifically, we partition the strategy space into actions that have the lowest

13
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Figure 2: Ratio of average QRE output to Nash equilibrium output in standard treat-
ments.
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Figure 3: Fraction of choices classified as collusive (closer to the collusive outcome than
to the other two outcomes) or competitive (closer to the Walrasian equilibrium than to
the other two outcomes) in standard treatments.
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absolute difference from either the collusive outcome, Nash equilibrium or Walrasian

equilibrium. We then calculate the relative frequency of choices in each category for each

treatment. Figure 3 shows that QRE predicts a higher frequency of collusive output and

a lower frequency of competitive output in the treatment with a smaller group size, for a

wide range of λ values.

Overall, both measures indicate that when the group size is manipulated using the

standard Cournot payoff function, QRE predicts more collusive behaviour in smaller

groups. We conclude that the previously documented increased collusiveness in more

concentrated markets could be driven by changes in incentives or locations of the key

outcomes.

3.2 QRE in Normalized Treatments

Next, we study the QRE predictions in normalized treatments. The normalized payoff

function was designed to keep the incentives similar across different group sizes, thus we

expect that the group size will have little predicted effect on the collusiveness of output

in the normalized treatments.
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Figure 4: QRE distribution in normalized treatments at λ “ 1.5. Vertical dashed line
indicates Nash equilibrium output.

Figure 4 illustrates the QRE distribution for λ “ 1.5. QRE distributions are similar

in N3 and N4, but somewhat shifted towards more competitive output in N2. This shift

is caused by the difference in the shape of the belief distribution. Holding the beliefs

about any individual opponent constant, the distribution of beliefs about the average

output would have a lower variance when the group size is large, because in such groups

extreme values of average output are less likely. Higher variance of the belief distribution

in N2 increases the attractiveness of higher output, because such output generates higher

expected payoffs when the average output of the opponents is more extreme (see the

payoffs in Table F.1, Appendix F).
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Figure 5: Ratio of average QRE output to Nash equilibrium output in normalized treat-
ments.
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Figure 6: Fraction of choices classified as collusive (closer to the collusive outcome than
to the other two outcomes) or competitive (closer to the Walrasian equilibrium than to
the other two outcomes) in normalized treatments.
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We quantify collusiveness using the two measures introduced in the previous section: a

ratio of average output to Nash equilibrium output and the frequency of output classified

as either collusive or competitive. Figures 5 and 6 show the QRE predictions about these

measures across a range of λ values. Figure 5 plots the ratio of average QRE output

to Nash equilibrium output. In contrast to the standard treatments (Figure 2), we find

that smaller groups are predicted to be slightly less collusive. However, the treatment

difference is much smaller compared to the standard treatments: the ratio differs by at

most 5%, in contrast to the differences of up to 60% in the standard treatments. Figure 6

shows that the slightly less collusive output in markets with two firms is primarily driven

by a higher frequency of competitive choices in this treatment. The predicted fraction

of collusive choices is nearly identical across the different group sizes, and much smaller

than the differences in the standard treatments.

Overall, QRE predicts that smaller groups should be more collusive only in the stan-

dard but not in the normalized treatments. Comparing the group size effect in both

designs can therefore identify whether the results found in the Cournot literature are pri-

marily driven by the pure group size effect, or by the changes in incentives and salience.

4 Results

First, we compare the group size effect on aggregate output in the standard and nor-

malized treatments. Afterwards, we compare the distributions of output and classify

behavior to identify how the group size affects the frequency of collusive output.

4.1 Aggregate Output

In the standard treatments, theoretical predictions change with the group size, therefore

average output (q̄i) needs to be normalized to compare the treatments. We do so using

two measures of collusion: the ratio of actual to predicted output and a collusion index.
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Figure 7: Ratio of average output to equilibrium output by treatment over time.
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Table 2: Three measures of collusion and profits across treatments. The first number is
the average in rounds 1-20; the number in brackets is the average in rounds 15-20.

Index S2 S4 N2 N3 N4
r 1.02 1.30 0.98 0.99 1.00

[1.05] [1.23] [0.99] [1.02] [1.02]
ϕN -0.10 -0.80 0.05 0.02 -0.002

[-0.20] [-0.62] [0.02] [-0.06] [-0.04]
ϕW 0.63 -0.08 0.43 0.41 0.40

[0.60] [0.03] [0.41] [0.36] [0.37]
πi 340.0 230.1 387.3 371.1 372.4

[338.8] [243.9] [381.9] [348.0] [361.9]

Ratio of actual to predicted output. A common way to normalize output is to

calculate the ratio of chosen output to Nash equilibrium output: r “ q̄i{q
N
i . Values below

(above) 1 indicate that output is more (less) collusive than the equilibrium prediction.

Figure 7 shows the dynamics of the across-markets average r. We evaluate the statistical

significance by calculating r separately for each group, aggregated either across all rounds

(1-20) and only the last five rounds (15-20), following the convention in the literature (e.g.

Huck et al., 2004). We compare the distributions of average normalized output using a

non-parametric Mann-Whitney U test (MWU); all the reported p-values are two-tailed.

In standard treatments, there is a significant difference between the markets with two

and four firms (MWU p ă 0.0001 in all rounds and p “ 0.001 in the last 5 rounds). This

result is consistent with the previous literature, which finds that smaller groups tend to

be more collusive (Horstmann et al., 2018). In the normalized treatments, there is no

difference between markets with two, three or four firms (for the pairwise comparisons,

MWU p ě 0.5826 in all rounds and p ě 0.3123 in the last 5 rounds).

Collusion index. Used in Horstmann et al. (2018), Engel (2007) and Suetens and

Potters (2007), the collusion index measures where the market output falls in the range

between the collusive outcome and the Nash equilibrium or the Walrasian equilibrium:

ϕN “ pq̄i´q
N
i q{pq

C
i ´q

N
i q and ϕW “ pq̄i´q

W
i q{pq

C
i ´q

W
i q. Both indexes would be equal to

1 if the market output was equal to the collusive output; the first index would be equal

to 0 if output was equal to the Nash equilibrium and the second would be equal to 0 if

output was equal to the Walrasian equilibrium. Note that in the normalized treatments,

the treatment comparison is identical for all three indexes because the key outcomes

are invariant to group size. We find that in the standard treatments, two-firm markets

are more collusive than four-firm markets, as measured by ϕN (MWU p “ 0.0001 in all

rounds, p “ 0.0103 in the last 5 rounds) or by ϕW (MWU p ă 0.0001 in all or only the last

5 rounds). In the normalized treatments, there is no difference between the markets with

two, three or four firms (for the pairwise comparisons, MWU p ě 0.5786 in all rounds

and p ě 0.3123 in the last 5 rounds).
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Table 3: Random effects GLS regression. Standard errors are clustered on the group
level.

Standard Normalized
DV: r DV: ϕN DV: ϕW DV: r DV: ϕN DV: ϕW

3-firm market - - - 0.0109 -0.0291 -0.0175
(0.42) (-0.42) (-0.42)

4-firm market 0.277˚˚˚ -0.705˚˚˚ -0.716˚˚˚ 0.0189 -0.0504 -0.0303
(6.37) (-4.96) (-11.02) (1.04) (-1.04) (-1.04)

1/Round 0.206˚ -0.501 -0.340˚˚ -0.0382 0.102 0.0611
(2.49) (-1.96) (-2.68) (-1.75) (1.75) (1.75)

Decreasing -0.0903˚˚˚ 0.241˚˚˚ 0.144˚˚˚

labels (-5.19) (5.19) (5.19)
Constant 0.988˚˚˚ -0.00840 0.695˚˚˚ 1.034˚˚˚ -0.0907 0.346˚˚˚

(32.33) (-0.07) (16.45) (58.88) (-1.94) (12.30)
N 1920 1920 1920 5280 5280 5280

z statistics in parentheses

* p ă 0.05, ** p ă 0.01, *** p ă 0.001

From a policy perspective, it is important to know whether firms in more concentrated

markets receive higher profits. Nash equilibrium predicts identical profits in all five

treatments. Table 2 shows that in the standard treatments, profits are significantly higher

in two-firm markets, both overall (MWU p ă 0.0001) and in the last 5 rounds (MWU

p “ 0.0001). In contrast, the differences between the three normalized treatments are not

significant (for all pairwise comparisons, MWU p ě 0.2323 in all rounds and p ě 0.1450

in the last 5 rounds).

Additionally, we evaluate the treatment effects using a panel data GLS regression with

a random effect on the group level, taking into account the inter-temporal dependence

of decisions as well as the dependence among the outputs of firms in the same group.

Standard errors are clustered on the group level. As dependent variables, we use the three

collusion indexes (r, ϕN , ϕW ). We measure the group size effect by including dummy

variables for each group size. For the normalized treatments, we also include an indicator

of the strategy space labeling. A variable equal to the inverse of a round is included

to capture changes in collusion due to experience. Table 3 shows that in the standard

treatments, markets with four firms are significantly less collusive than markets with

two firms, for all three indexes. The coefficients of the inverse round variable indicate

increasing collusion over time. In the normalized treatments, the three-firm and four-firm

markets are not different from the two-firm markets. The “decreasing labels” variable

indicates treatments in which higher output was labeled with lower numbers. The positive

estimated coefficient of this variable shows increased collusiveness when the strategy space

is reversed; it is largely driven by the salience of producing 10 units, which is competitive

with the increasing strategy space, but collusive in decreasing treatments. Note that in
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normalized treatments, strategy space labeling has a much stronger effect than the group

size.16

These results are robust to different specifications. Table D.3 in Appendix D shows

the estimated treatment effects using data only from the last 5 rounds, when participants

would have accumulated experience. The treatment effects remain qualitatively the same.

Results also do not change if we remove decisions that were implemented because par-

ticipants failed to make a decision within the time limit. In the normalized treatments,

we ran regressions separately for the decreasing and increasing strategy space and found

no significant group size effect (Table D.2 in Appendix D). Including age and gender

does not change the results, and coefficients for these two variables are not significantly

different from zero.

Result 1. In standard treatments, aggregate output is more collusive in markets with

fewer firms. In normalized treatments, group size has no effect on aggregate output.

4.2 Distribution of Output

So far, we have shown that group size does not change the average collusiveness of output

when the payoff function is normalized. Studying the effect on average output and profits

is important for policy, but we are also interested in how the group size changes the

distribution of output, and particularly whether the frequency of collusive choices is

higher in smaller groups.
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Figure 8: Kernel density estimation of individual output, pooled across rounds. We used
Epanechnikov kernel function.

Figure 8 shows the kernel density estimation of individually chosen output. In stan-

dard treatments, average output is higher in smaller groups, but the treatment difference

is not as strong as predicted by Nash equilibrium. Consequently, the average output

is close to the equilibrium prediction in two-firm markets, but exceeds it in four-firm

markets. In normalized treatments, output distributions are centered around the Nash

16The effect of strategy space labeling is discussed in more detail in Appendix A.
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Figure 9: Standard deviation of output by treatment over time.

equilibrium but the variance is notably lower in markets with more firms: the stan-

dard deviation of chosen output is 4.9 in N2, 4.2 in N3 and 3.7 in N4. We evaluate

the statistical significance of these differences by calculating the standard deviation of

individually-chosen output in each group and comparing the difference between treat-

ments. In normalized treatments, we find that the standard deviation is significantly

higher in two-firm markets, compared to the markets with more firms (MWU p “ 0.0041

comparing N2 to N3 and p “ 0.0017 comparing N2 to N4). In standard treatments, group

size has no significant effect on the standard deviation. Figure 9 plots the evolution if the

standard deviation, calculated using all choices in each round. In standard treatments,

there is no difference between the two group sizes. In normalized treatments, there are

no treatment differences at the start of the game, but a gap between the three treatments

appears and grows over time.

Differences in the choice distributions affect the fraction of choices classified as collu-

sive. We use two methods to identify the frequency of collusion. First, we use collusion

counts (Waichman et al., 2014), defined as the number of rounds in which quantities are

in the collusive region, that is closer to the collusive outcome than to the Nash equi-

librium. Unlike Waichman et al. (2014), we perform the classification using individual

rather than total market output, because market output in large groups would fall into

the collusive range only if the majority of firms act collusively, which is less likely than

in smaller groups, thus underestimating the degree of collusion.17 The average number

of rounds in which individual output is classified as collusive is 5.1 in S4 and 5.2 in S2,

a difference that is not significant (MWU p “ 0.49). In normalized treatments, collusion

counts go up from 3.0 in N4 to 4.1 in N3 and 5.8 in N2; there is significantly more col-

lusion in two-firm markets than in three-firm markets (MWU p “ 0.0299) or four-firm

17Classification using the market output replicates the usual finding of more collusive choices in smaller
groups: in standard treatments, the average collusion counts go up from 5.1 to 10.3; in normalized
treatments, from 3.7 to 8.1 to 9.0. The difference between the markets with two and four firms is
significant in both standard (MWU p “ 0.0084) and normalized treatments (MWU p “ 0.0009). The
three-firm market is not significantly different from the other two.
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Figure 10: Classification of choices according to which outcome they are closest to. Data
from the last 5 rounds.

markets (MWU p “ 0.0018).

The comparison of collusion counts indicates a higher incidence of collusion in markets

with fewer firms, in contrast to the results based on aggregate output. Figure 8 reveals

that this result in normalized treatments is explained by smaller groups having a higher

frequency of both collusive and competitive choices. We investigate these differences in

more detail by classifying individual output based on the closest key outcome. We follow

Huck et al. (2004), but use output from individual firms rather than the total market

output. To identify whether output converges to one of the key outcomes, we use the

average output of each firm in the last 5 rounds. Figure 10 shows that in standard

treatments, a larger group size increases the fraction of choices classified as Walrasian

but has no effect on the frequency of collusive choices. In normalized treatments, a

larger group size decreases the frequency of collusive choices but has a non-monotonic

effect on the frequency of Walrasian or Nash choices. Increased incidence of collusion

in smaller groups might indicate that some of the small groups managed to implicitly

collude; however, the next section will also show that it might instead reflect higher

variance due to a change in feedback that participants receive.

Result 2. In normalized treatments, the frequency of collusive output and the variance

of output are higher in smaller groups. In standard treatments, group size has no effect

on either of them.
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5 Model Estimation

Our standard treatments reproduce the results from the previous literature, finding that

output is on average more collusive in smaller groups. In contrast, group size in the

normalized treatments does not affect the aggregate output or profits, but smaller groups

feature a higher variance of output, an effect that is not found in the standard treatments.

This section will investigate how these data patterns can be explained.

5.1 Quantal Response Equilibrium

First, we test whether the data patterns can be explained by QRE. Section 3 has shown

that QRE correctly predicts that a decrease in group size will increase collusiveness

in the standard, but not in the normalized treatments. QRE also makes predictions

about the entire distribution of choices, therefore we can test whether it can explain the

change in the variance observed in the normalized treatments. Logit QRE is estimated

using a method adapted from Bajari and Hortacsu (2005): we calculate the noisy best-

response to the empirical choice distribution, and use a grid search procedure to find a

precision parameter (λ) that maximizes the likelihood of producing the data observed in

the experiment. This method provides an unbiased estimate of the precision parameter

under the assumption that QRE is correct because in QRE beliefs would coincide with

the empirical distribution. In practice, QRE will never fit the data perfectly, so there

will be a discrepancy between this method and the tracing procedure we used to compute

QRE in Section 3.18

When estimating QRE, we either fit a separate model for each treatment, or fit a

single model, combining data from all five treatments. In the literature, it is common

to estimate a separate model for each game (e.g. Lim et al., 2014), but this method

implicitly assumes that the sensitivity to payoff differences is changing with group size.

If very different values of λ are needed to explain the group size effect, results would be

driven not by the elements in QRE, but by some other unmodeled factors. The second

method therefore tests whether the differences between all treatment can be explained

with a single value of the precision parameter.19

18There are two main benefits of using the estimation procedure from Bajari and Hortacsu (2005).
First, it gives the flexibility to perform a combined estimation using multiple treatments with different
payoff function, which is not possible with the standard tracing procedure. Second, the computational
complexity of the estimation procedure is greatly reduced, since it is no longer necessary to compute the
fixed point for a large number of parameter values. Computational complexity is especially problematic
for the games with many participants and a large strategy space, such as our S4 treatment (51 strategies
for each of the 4 participants).

19We also estimated QRE separately for normalized and standard treatments, requiring λ to be the
same across different group sizes but allowing them to differ between standard and normalized treatments.
This is justified by the important differences between standard and normalized treatments, such as the
range of payoffs or the size of the strategy space, which affect the QRE predictions. In practice, the
estimates are very close to the combined estimation. We report these results in Appendix D.
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Table 4: Goodness of fit and estimated parameter values in QRE.

Separate estimation Combined estimation

Treatment λ̂ LL λ̂ LL
S2 1.395 -2739.97 1.497 -2740.34
S4 1.535 -4561.56 1.497 -4561.65
N2 -0.292 -5436.98 1.497 -5531.25
N3 2.507 -4014.05 1.497 -4024.05
N4 4.686 -5161.69 1.497 -5281.54
Total -21914.25 -22138.83
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Figure 11: Best-fitting QRE, estimated separately for each treatment, compared to the
kernel density estimation of the experimental data.

Table 4 provides an overview of the estimated parameter values and goodness of fit (log

likelihood) for each method. When a separate model is fit for each game, the estimated

values of the precision parameter are similar in the two standard treatments (λ̂ “ 1.4

and λ̂ “ 1.5), but very different in the three normalized treatments. Therefore, QRE can

explain the group size effect in standard treatments (Result 1), but cannot explain the

increased variance in smaller groups of the normalized treatments (Result 2), unless it

is assumed that sensitivity to expected payoff differences is lower in markets with fewer

firms. In fact, the estimated value of the precision parameter is negative in N2, indicating

that the output distribution in this treatment could be explained by participants choosing

actions with lower expected payoffs.

Figure 11 illustrates the goodness of fit by comparing the kernel density estimation of

the experimental data to the choice probabilities predicted by the best-fitting QRE. In

the standard treatments, QRE can explain the shift in the choice distribution driven by

the group size. In the normalized treatments, the fit is less good as QRE underestimates

the frequency of salient outcomes, such as the Nash equilibrium and the endpoints of the

strategy space, even when a separate model is fit for each treatments. The additional
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Figure 12: Best-fitting QRE, estimated for all treatments, compared to the kernel density
estimation of the experimental data).

requirement for the precision parameter to be constant across treatments in the second

method hardly changes the fit in the standard treatments, but decreases the fit in the

normalized treatments, especially in N2 and N4. Figure 12 shows the choice probabilities

in the best-fitting QRE with a single value of λ̂ “ 1.497. The model with a single param-

eter value can explain the change of the output distribution in the standard treatments,

but not in the normalized ones.

Overall, QRE can explain why output is on aggregate more collusive in smaller groups

in standard treatments and why there is no difference in the normalized treatments

(Result 1). QRE can also explain the overall change in the shape of the choice distribution

in standard treatments, but it cannot explain why variance decreases in group size in the

normalized treatments (Result 2).

5.2 Best-response Likelihood

We propose that the increased variance of output in smaller groups of the normalized

treatment could be explained by the increased likelihood that extreme output values

will maximize payoffs. In the normalized treatments, payoffs and the best response

depend on the average output of the opponents; in standard treatments, they depend

on the sum of output. The difference is important because an increase in the number

of opponents reduces the variance of the mean, but increases the variance of the sum.

A higher variance in the payoff-relevant statistic translates into a higher variance of the

best-response distribution, as it becomes more likely that extreme output values will

maximize ex-post payoffs.

Figure 13 illustrates this effect in the normalized treatments. We model the best-

response distribution of a player who expects all opponents to independently draw their
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Standard deviation is set to 3.

output from a normal distribution (or opponents are randomly sampled from a popula-

tion). The red line in Figure 13 illustrates the distribution of average output expected by

the players who face a single opponent. The blue dashed line illustrates the distribution

expected by players who face three opponents. The variance of the latter is lower because

the average of three independent draws is less likely to differ from the population mean

than a single draw. The black kinked line shows the best-response correspondence, which

maps the distribution of average output into the best-response distribution, plotted on

the left. The best-response function translates higher variance of the average opponents’

output into higher variance of the best-response distribution. We therefore predict that

when payoffs depend on mean output, players in smaller groups would more often observe

extreme values and would best-respond by more frequently choosing extreme output val-

ues. Note that this prediction does not hold in the standard treatments, where choices are

aggregated by taking the sum, because the sampling distribution of the sum has a higher

variance when the sample is larger. The exact predictions about the variance in stan-

dard treatments depend on the assumed parameter values, as summing changes both the

variance and the mean of the payoff-relevant statistic (for more details, see Appendix C).

In the experiment, this mechanism implies that in small groups of the normalized

treatment, participants would experience higher variance of the average output chosen

by the opponents, and would therefore more often find that extreme output values are the

best response. We can test this prediction by comparing the incentives to respond to the

observed feedback. First, we test the prediction that the variance of total output of the

opponents is increasing in group size, but the variance of average output is decreasing.

For each participant, we calculate the standard deviation of either the total or the mean
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Figure 14: Kernel density estimation of ex-post rational actions, pooled across all rounds.

opponents’ output across all 20 rounds and then compute the standard deviation in each

treatment. As predicted, the standard deviation of the total opponents’ output increases

from 10 in S2 to 19 in S4 in standard treatments. In normalized treatments, the standard

deviation of the average opponents’ output decreases from 4.2 in N2 to 2.3 in N3 and 1.9

in N4.

These differences affect the shape of the best-response distribution. Figure 14 shows

the distribution of Cournot best-replies to the output of the opponents, aggregated across

all participants and all rounds. These distributions would be observed if participants

expected the opponents to make the same choices as in the previous round, and best-

responded to those beliefs. Standard deviation of the best-response distribution is in-

creasing in group size in the standard treatments (5.7 in S2 and 8.1 in S4) but decreasing

in the normalized treatments (5.8 in N2, 4.4 in N3 and 3.1 in N4). This result shows that

the observation of variance decreasing in group size only in the normalized treatments

could be explained by participants responding to observed feedback.

So far, we have shown that the difference in choice aggregation could change the feed-

back that participants typically observe, thus altering the choices of those who myopically

best-respond to such feedback. This explanation is consistent with the experimental data,

but we have not yet discussed a formal model that could explain such behavior. We pro-

pose such a model, which we call Frequent Response Equilibrium (FRE), in Appendix C.

FRE is an modification of QRE, based on the concept that the probability to choose

an action depends on the likelihood that the action is the best response, instead of the

expected payoff that the action generates, as is assumed in QRE.20 QRE could emerge as

20The action that generates the highest expected payoff is different from the action that is most likely
to provide the highest payoff, because the former does not take into account the magnitude of payoffs.
For example, consider our N2 treatment and suppose that players expect the opponent to draw their
action from a uniform distribution. Compare the equilibrium output of 16 to the lowest possible output
of 8. Producing 16 provides a higher expected payoff than 8 because it generates high profits when
the opponent is choosing a low or an intermediate output level (Table F.1). However, 16 is rarely the
exact best-response – it is the best response only if the other player chooses 16 as well, whereas 8 is the
best response to any output above 21. When evaluated based on the likelihood to be the best response,
output of 8 would therefore outperform 16, while 16 would outperform 8 based on the expected payoff.
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the long-run outcome of logit response dynamics (Alós-Ferrer and Netzer, 2010; Cason

et al., 2021), as players form beliefs from observed history and choose stochastic best-

responses. Instead, FRE could emerge as the long-run outcome if players favor actions

that are frequent best-responses to the observed history, in a manner similar to prob-

ability matching (Vulkan, 2000). FRE assumptions are also in line with the empirical

evidence: when decisions are made from experience, many participants choose the action

that is usually the best-response, rather than the action that generates highest expected

payoffs (Erev and Barron, 2005; Yechiam and Busemeyer, 2006).

When we fit FRE to the data and compare the goodness of fit to QRE, we find

that it has a better overall fit, and performs worse than QRE only in the S4 treatment,

where it overestimates the frequency of extreme output levels (Table C.1 in Appendix C).

The better fit is quite remarkable since FRE uses much less information about the game

structure – only whether the action is the best response, ignoring the magnitude of payoff

differences. A hybrid model that takes into account both the likelihood to be the best

response and the magnitude of payoffs would likely further improve the fit and could be

used to understand patterns in other games. Overall, we conclude that the increased

variance in smaller groups, found in the normalized treatments, can be explained by a

static solution concept based on the likelihood that an action is the best response.

6 Concluding Remarks

Previous Cournot oligopoly experiments found higher rates of tacit collusion in smaller

groups. We demonstrate that this result could be explained by changes in the payoff

structure that occur when the group size is manipulated using the standard Cournot

payoff function. We propose an alternative way to manipulate the group size, which

makes markets with a different number of competitors more comparable. This normalized

design is used to identify whether differences in collusion rates are driven by the group

size itself, or by the changes in incentives or the salience of key outcomes. We replicate

the finding of more collusive output in smaller groups using the standard design, but find

no effect of group size in the normalized treatments. These results suggest that the group

size effect is largely driven by the changes in incentives or salience, instead of purely the

number of interacting firms.

In the normalized treatments, we also find that the variance of individual output

is decreasing in group size. This effect cannot be explained by the Quantal Response

Equilibrium. Instead, it could be explained by the difference in feedback caused by

the implemented aggregation rule: total output in standard treatments, average output

in normalized treatments. The variance of average output decreases in larger groups,

making extreme output values rarely the best-response. Instead, the variance of total

output increases in larger groups. Interestingly, increased variance in smaller groups
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in the normalized treatments provides some support for the original result of higher

frequency of collusion in smaller groups, although the frequency of competitive choices

goes up as well.

A better understanding of how the number of competitors affects collusion rates could

improve the design of competition policy. When deciding whether to approve a merger,

regulators evaluate whether the resulting increase in market concentration would sig-

nificantly lessen competition. The practices used by the Department of Justice and

the Federal Trade Commission, two agencies in charge of enforcing antitrust law in the

U.S., are explained in the Horizontal Merger Guidelines.21 The guidelines identify two

channels through which mergers could enhance market power: “unilateral effects” and

“coordinated effects”.22 Unilateral effects refer to the higher incentives to increase prices

in more concentrated markets; for example, a merger of firms that sell similar products

increases the incentive to raise prices because the lost sales that would have been diverted

to the competitor’s products are now diverted to the products sold by other divisions of

the same firm. Coordinated effects refer to the increased likelihood of implicit or explicit

coordination on higher prices in more concentrated markets. Successful coordination re-

quires the ability to detect and punish the firms that deviate from collusive agreements,23

which is easier when there are fewer firms and the behavior of rivals is more predictable.

These two channels correspond to the two mechanisms studied in this paper: individual

incentives and the pure group size effect. Just as the real firms, participants in Cournot

oligopoly could collude more in smaller groups because of higher incentives or because

implicit coordination is easier when there are fewer participants. Identifying the mech-

anism is critical to select the appropriate strategy for regulating mergers. If collusion

is driven primarily by coordinated effects, regulators should focus on market concentra-

tion, as was advocated in the 1968 and 1982 guidelines (Shapiro, 2010). However, if it

is primarily driven by the unilateral effects, regulators should instead estimate the value

of diverted sales by evaluating the degree of product differentiation, market elasticity

of demand or costs of output suppression. Recent versions of the guidelines advocate

this view, introducing the concept of unilateral effects in the 1992 guidelines and accen-

tuating it in 2010 (Shapiro, 2010). Consequently, the guidelines have focused more on

the economic factors and techniques to estimate the value of diverted sales rather than

the market concentration.24 The results of our experiments support this shift, providing

21U.S. Department of Justice & Federal Trade Commission, Horizontal Merger Guidelines (2010),
available at http://www.justice.gov/atr/public/guidelines/hmg-2010.pdf

22The European Commission provides similar guidelines, naming the two chan-
nels “coordinated effects” and “non-coordinated effects”, see Guidelines on the As-
sessment of Horizontal Mergers under the Council Regulation on the Control of Con-
centrations between Undertakings, 2004 O.J. (L 24) 1 (EC), available at http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2004:031:0005:0018:EN:PDF

23U.S. Department of Justice & Federal Trade Commission, Commentary on the Horizontal Merger
Guidelines (2006), available at http://www.justice.gov/atr/public/guidelines/215247.pdf

24Section 4 of the 2010 Guidelines: “The measurement of market shares and market concentration is
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evidence that collusion in concentrated markets occurs not because of a smaller number

of competitors, but because of the increased incentives to collude. Mergers that do not

create additional incentives to collude (e.g. in markets with a low diversion ratio and low

margins, Farrell and Shapiro, 2010) might not need to be blocked even if they increase

market concentration.

Our study also improves the understanding of the mechanism behind the group size

effect, a question that is receiving more interest due to the possibility to study groups

with hundreds or even thousands of interacting participants (Pereda et al., 2019; Choi

et al., 2020; Li et al., 2021; Arifovic et al., 2022). In typical games, player’s payoffs

and the best-response depend on the mean, sum or the minimum choice of others. We

show that the choice of measure, typically dictated by convention or external validity, has

important consequences on how behavior is predicted to change with group size. When

payoffs depend on the minimum choice, such as in the minimum effort game or Bertrand

oligopoly with homogenous products, the risk of at least one participant selecting a low

value is higher in larger groups. Therefore, in larger groups, players would receive higher

expected payoffs from choosing lower numbers, as predicted by QRE. This mechanism

has been identified in theoretical work (see Anderson et al., 2001 for the minimum effort

game; see Baye and Morgan, 2004, and Bayer et al., 2019, for Bertand oligopoly) and

it is consistent with experimental evidence (Van Huyck et al., 1990; Dufwenberg and

Gneezy, 2000). However, the mechanism only works if payoffs depend on the minimum

choice. Our study is the first to study the group size effect in the same game using

two different aggregation rules: the mean and the sum. We show that when payoffs

depend on total output, the group size affects the locations of key outcomes and the

incentives to deviate from them; therefore, QRE predicts more competitive output in

larger groups. In contrast, when payoffs depend on the average output, the expected

payoffs remain similar across different group sizes and QRE predicts similar behavioral

patterns. However, even though the differences between actions in terms of expected

payoffs remain similar, the distribution of payoffs changes. In large groups, the variance

of average output of other players is low, therefore extreme output values are rarely the

best, but they are also unlikely to generate very low payoffs. In small groups, average

output of others is much noisier, therefore extreme output is much more likely to be

the best response, although it is also likely to generate very low payoffs. This difference

can be critical if boundedly rational players choose the actions that are usually the best

responses, instead of choosing based on expected payoffs. Future research on group size

effects should therefore carefully study the potential mechanisms: incentives, labeling of

strategies and the difficulty of coordination. Some of these mechanisms can be controlled,

as we exemplified by creating the normalized treatments, while others can be accounted

for by modeling boundedly rational behavior and comparing it to empirical data.

not an end in itself, but is useful to the extent it illuminates the merger’s likely competitive effects”.
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The results presented here and the methods of studying the changes in incentives and

feedback could pave the way for future research that would systematically study how the

features of the game, such as the shape of the best-response function and aggregation

rule, affect the incentives and feedback and therefore the changes in behavior in response

to group size. The goal would be to understand why group size effects are found in

some settings but not in others (e.g. see Arifovic et al., 2022 for a discussion about

potential explanations in different coordination games). If the feedback-based explanation

is correct, the results from the Cournot oligopoly might not transfer to other games due to

the different shape of the best-response function. For example, in rent-seeking contest, the

best-response function is hump-shaped, therefore greater variance in the payoff-relevant

measure is predicted to increase the frequency of low effort, in contrast to the results in

our normalized treatments, where it leads to a greater frequency of both very low and

very high output. This hypothesis could be tested by manipulating the group size in

contests, while keeping the payoffs invariant to the average, rather than total effort of

others. Previous research, which used the latter aggregation rule, found just the opposite

results, revealing higher frequency of low effort in large groups (Lim et al., 2014). It would

be interesting to test if this effect would decrease or be reversed if payoffs depended on

the mean rather than the total effort of others. More broadly, to understand the nature of

the group size effect, it would be very interesting to study it under various combinations

of aggregation rules and types of best-response functions.

Our study has several limitations that would be interesting to address in future re-

search. We focused only on implicit collusion, but it would be interesting to compare our

results to a framework in which explicit collusion is possible, perhaps by adding commu-

nication. On one hand, communication might increase the importance of coordination,

preventing collusion in large groups; on the other hand, evidence shows that communica-

tion allows even large groups to collude, therefore the group size effect is not found even

with the standard Cournot payoff function (Waichman et al., 2014; Fonseca et al., 2018).

It would also be interesting to extend the setup to other games, such as a rent-seeking

contest or Bertrand competition, where a similar groups size effect has been observed for

both tacit and explicit collusion (Fonseca and Normann, 2012).
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Appendix

A Strategy Space Labeling in Normalized treatments

Table A.1: Comparison of the ratio of average output to NE prediction and average profit
per round. The number in brackets shows the values averaged across rounds 15-20.

N2I N3I N4I N2D N3D N4D
qi{q

N
i 1.03 1.07 1.03 0.94 0.92 0.98

[1.02] [1.10] [1.02] [0.97] [0.95] [1.02]
πi 366.4 322.8 354.2 408.3 419.5 390.6

[377.5] [299.5] [363.4] [386.3] [396.6] [360.3]

The normalized treatments were run with one of the two labeling schemes. In both

schemes, actions were labeled from 0 to 16, but in the “increasing” scheme, higher num-

bers represented higher output (i.e. 0 represented the output of 8, and 16 represented

the output of 24), while in the “decreasing” scheme, the strategy space was reversed (0

represented the output of 24, and 16 represented the output of 8). First, we study the

importance of labeling by comparing the ratio of average output to Nash equilibrium pre-

diction across the two schemes, in each treatment. Table A.1 shows that on average, the

chosen output is above NE prediction in increasing treatments, but below it in decreasing

treatments. Mann-Whitney U test shows that in each treatment, output is significantly

more collusive when the decreasing labeling scheme is used (MWU p “ 0.0111 in four-firm

treatments, p “ 0.0085 in three-firm treatments and p “ 0.0296 in two-firm treatments).

We also test whether the effect of labeling persists over time, as it is commonly found

that the framing effects are stronger at the start of the game Masiliūnas and Nax (2020).

If we compare the average ratio of output to NE prediction in two schemes only in the

last 5 rounds (see the numbers in brackets in Table A.1), we find that labeling effect

remains significant only in the three-firm markets (p “ 0.0178). A similar result is found

in terms of the generated profits, which are significantly higher in the decreasing scheme

when all data is used (MWU p “ 0.0153 in four-firm treatments, p “ 0.0056 in three-firm

treatments and p “ 0.0392 in two-firm treatments). In the last 5 rounds, the difference

is significant only in three-firm treatments (MWU p “ 0.0243). However, if we run a

GLS regression using pooled data from all the normalized treatments, we still find more

collusive output in the decreasing scheme (p “ 0.016, Table D.3 in Appendix D), even

though the effect is not as strong as when data from all rounds is used (p ă 0.001, Table

3). We conclude that strategy space labeling has a consistent effect on collusiveness at

the start of the experiment, although it vanes over time.

To understand why labeling affects output, we compare the distributions of choices in

the two schemes. Figure A.1 overlays the histogram of output in the decreasing scheme

(white) with the increasing scheme (green), indicating the labels seen by the participants
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Figure A.1: Output distributions in normalized treatments for the increasing and deceas-
ing labeling schemes. Vertical lines indicate the three key outcomes (collusive outcome,
Nash equilibrium and Walrasian equilibrium).
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on separate axes. Figures on the right plot data from all rounds. Data shows that

choices tend to be more collusive in the decreasing scheme, in all three treatments. In

part, the difference can be explained by action labeled as “10” being more salient and thus

frequently chosen than the same action when it is labeled as “6”. In the increasing scheme,

the action labeled as “10” is midway between the Nash and Walrasian equilibria, but in

the decreasing scheme, it is more collusive than the Nash equilibrium output. However,

there are other differences as well. With all three group sizes, action 16 is chosen more

often than action 0, regardless of whether it is mapped into output 8 or 24. There is

also some evidence that the distribution of choices is shifted towards actions with higher

labels, especially in the three-firm treatment. Thus it seems that the effect of labeling

is driven both by the salience of action “10” and by a preference for choosing actions

labeled with higher numbers. The right column of Figure A.1 shows the distribution of

choices only in the last 5 rounds. The effect of labeling persists in markets with two and

three firms, although the magnitude of the effect is lower.

The manipulation of the labeling scheme allows us to more accurately assess the

aggregate collusiveness of output. Had we used only the increasing scheme, as was done

in all the previous literature, we would likely conclude that there is a tendency to behave

more competitively than predicted by the Nash equilibrium (see Table A.1). But the

comparison to the decreasing scheme reveals that this tendency is driven in part by

the labeling rather than the incentive scheme. By combining the data from two different

labeling schemes, we can evaluate and eliminate the effect of such strategy space labeling.
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B Response to Feedback

In this Appendix, we provide more details about how the difference in the output ag-

gregation between the standard and normalized treatments changes the feedback that

participants observe and thus the choices of those who follow Cournot best-response. In

the standard treatments, the sum of opponents’ output is mapped into the same best-

response, regardless of the group size. In the normalized treatments, the average of

opponents’ output is mapped into the same best-response, regardless of the group size.

The distribution of the total and average output varies with the group size, affecting the

variance of the best-response distribution. As an illustration, suppose that each opponent

chooses their output qi from a normal distribution N pµ, σ2q. Then the sum of the total

output chosen by pn ´ 1q opponents is the sum of pn ´ 1q random variables drawn from

the normal distribution.

Total output of the opponents thus follows the normal distribution with the following

parameter values:

n´1
ÿ

j“1

qj „ N ppn´ 1qµ, pn´ 1qσ2
q

Average output chosen by the pn´ 1q opponents also follows the normal distribution:

1

n´ 1

n´1
ÿ

j“1

qj „ N pµ,
1

n´ 1
σ2
q

Note that as the group size (n) increases, the variance of the total output goes up,

but the variance of the average output goes down. This difference is subsequently trans-

lated into a difference in the variance of the best-response distribution, as illustrated in

Figures B.1 and B.2. The curves inside the figures display the probability distributions

of the payoff-relevant statistics – total output for standard treatments and average out-

put for normalized treatments. The distributions are plotted assuming that the mean

of the distribution is equal to the Nash equilibrium and the standard deviation is equal

to 8 in standard and 3 in normalized treatments (close to the standard deviations seen

in experiments, as shown in Figure 9). The variance of the total opponents’ output is

increasing in group size (Figure B.1), but the variance of the mean output is decreasing

in group size (Figure B.2). The black line in each figure shows how the total or mean

output chosen by opponents (which is on the x-axis) is mapped into the best response.

The curves on the left side of the figure show the resulting distribution of best-responses

to the corresponding distribution of either the sum or the mean output of the opponents.

As one can observe, a higher variance of the latter distribution translates into a higher

variance of the best-response distribution. We conclude that the variance of the best-

response distribution would be predicted to increase in group size in standard treatments,
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but decrease in group size in normalized treatments.
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Figure B.1: Best-response curve, probability distribution of total output of the opponents
and the resulting probability distribution of the best response (on the left). Standard
deviation is set to 8.
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Figure B.2: Best-response curve, probability distribution of average output of the op-
ponents and the resulting probability distribution of the best response (on the left).
Standard deviation is set to 3.
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C Frequent Response Equilibrium

This appendix formally defines the Frequent Response Equilibrium (FRE), which is an

extension of QRE, presented in Section 3. We also fit FRE to the experimental data and

compare the goodness of fit to QRE.

Let q´i “ tq1, . . . , qi´1, qi`1, . . . , qnu be the pure strategy profile of all players other

than i. Then p´i P ∆´i is the mixed strategy profile of all others players, where ∆´i is

the the set of all possible mixed strategy profiles. The likelihood that q´i will be played

in p´i is p´ipq´iq. Denote the set of strategies that are best responses to a pure strategy

profile q´i by Bpq´iq “ tqk P Qi|@qj P Qi : πipqk, q´iq ě πipqj, q´iqu. Then the likelihood

that qk is the best-response to q´i is calculated by bpqk, q´iq, defined as:

bpqk, q´iq “

$

&

%

1
|Bpq´iq|

if qk P Bpq´iq

0 if qk R Bpq´iq

The likelihood that action qk is the best-response conditional on probabilistic belief

p´i is calculated by rpqk, p´iq “
ř

q´i
bpqk, q´iqp´ipq´iq. FRE assumes that player are

maximizing the probability that the action will be the best response; therefore, the utility

function defined in equation (2) is replaced by:

uipqk, p´iq “ rpqk, p´iq ` εik (4)

The definition of the solution concept follows the one of QRE, detailed in Section 3,

with the choice probabilities determined by equation (3). We set up FRE to differ from

QRE only in the way the attractions are determined (based on the likelihood of being

a best-response rather than expected payoff), therefore we retained the assumption that

attractions are mapped into choice probabilities using a softmax function with a λ pa-

rameter. If λ Ñ 8, FRE approaches Nash equilibrium because the action that has the

highest likelihood to be the best response must also provide the highest expected payoff.

If λ “ 0, all actions are chosen with equal probabilities.

First, we illustrate the FRE predictions by plotting the predicted distribution of

choices at various values of λ. Then, we evaluate the goodness of fit by fitting FRE to

the experimental data and comparing the fit to QRE. From the definition of FRE, note

that it is equivalent to the QRE of a modified game, in which game’s payoffs πipqk, q´iq

are replaced by the likelihood that an action is a best response, calculated by bpqk, q´iq.

We therefore calculate FRE using the same tracing procedure as in QRE, but using the

modified game. Note that this modification leads to a significant loss of information

about the incentives faced by the players.25

25It would be possible to develop a hybrid model of QRE and FRE, in which attractions are a convex
combination of the monetary payoff and the best-response likelihood. However, such a model is beyond
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Figure C.1: FRE distribution with λ “ 8. Vertical dashed lines indicate symmetric Nash
equilibria.

Figure C.1 shows the FRE choice probabilities for λ “ 8. In standard treatments, S4

stands out due to the high predicted frequency of producing nothing, which is the best

response when the total output of the other firms exceeds 80. In normalized treatments,

the FRE choice distribution has a higher variance in smaller groups. N2 is notable due

to a high predicted frequency of the two most extreme output levels. This prediction is

explained by a higher likelihood of observing extreme average output in N2 than in N3 or

N4, and a best-response function that makes the output of 8 optimal when the average

output of the other firms exceeds 21, while 24 is optimal when it falls below 11. Overall,

the direction of change in FRE choice distributions in normalized treatments reflects the

empirical pattern. We further explore the differences in variance across group sizes by

calculating the standard deviation of the choice distribution for λ values between 0 and

15. Figure C.2 shows that FRE correctly predicts that in the normalized treatments, the

standard deviations is decreasing in group size.

Next, we fit FRE to the data using the method originally developed by Bajari and

Hortacsu (2005). First, for each action, we calculate the expected likelihood of being

the best response, assuming that the strategy profile of other players is generated by

each player independently drawing their strategy from the empirically observed output

distribution. The expected likelihoods are mapped into choice probabilities using the

softmax function with parameter λ. We fit the model by estimating the value of λ that

maximizes the likelihood of the empirical choice distribution.26

Table C.1 extends the results from Table 4, comparing the estimated values and

the scope of this paper.
26Note that the value of λ estimated in FRE cannot be compared to the λ values in QRE because the

attractions in FRE are measured in likelihood (ranging from 0 to 1) while attractions in QRE represent
the expected monetary earnings.
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Figure C.2: Standard deviation of output in estimated FRE distributions for λ P r0, 15s.

Table C.1: Goodness of fit and estimated parameter values in QRE and FRE.

QRE FRE
Separate Combined Separate Combined

λ̂ LL λ̂ LL λ̂ LL λ̂ LL
S2 1.395 -2739.97 1.497 -2740.34 13.63 -2665.76 7.84 -2701.296
S4 1.535 -4561.56 1.497 -4561.65 4.42 -4701.504 7.84 -4715.934
N2 -0.292 -5436.98 1.497 -5531.25 4.98 -5324.712 7.84 -5369.582
N3 2.507 -4014.05 1.497 -4024.05 14.68 -4001.647 7.84 -4018.677
N4 4.686 -5161.69 1.497 -5281.54 15.32 -5045.288 7.84 -5136.418
Total -21914.25 -22138.83 -21738.91 -21941.91
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Figure C.3: Best-fitting FRE estimated separately for each treatment.
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Figure C.4: Best-fitting FRE estimated for all treatments.

goodness of fit for QRE and FRE. Figures C.3 and C.4 illustrate the fit by comparing

the choice probabilities in the best-fitting FRE to the kernel density estimates of the

experimental data. Overall, FRE has a higher total log-likelihood than QRE, both when

a separate model is estimated for each treatment and when a single model is estimated

for all treatments. FRE also fits better in each individual game, except for S4. FRE

fails to explain choices in S4 because it overestimates the frequency of choosing 0. In

the experiment, participants would have maximized their round earnings by producing

0 each time the total output by other participants exceeded 80 (which happened in over

20% of the rounds), yet 0 was chosen only about 2% of the time. In the normalized

treatments, predicted choice probabilities are close to the empirical data, although the

estimated λ value is much lower in N2 than in N3 or N4. The higher estimated level of

noise in N2 is again caused by FRE overestimating the frequency of the most extreme

output levels. When λ is required to be the same in all five games, FRE can explain the

increased variance in smaller groups of the normalized treatments, although the higher

noise level needed to reduce the predicted frequency of the extreme choices in S4 and N2

reduces the goodness of fit in the other three treatments.
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D Additional Results

Table D.1: Structure of all treatments that were run. This paper uses data only from the
first block of 20 rounds. In games marked with I, the strategy space 8-24 was mapped
into 0-16. In games marked with D, the strategy space was reversed before mapping into
0-16. Games marked with S use a standard Cournot oligopoly incentive structure with
a strategy space 0-50. SC3 is a 3-person game of strategic complements, with either a
strategy space 0-16 (SC3) or 0-50 (SC’).

Treatment 1 2 3 4 5 6 7 8
Rounds 1-20 N2I N4I N3I N2D N4D N3D S2 S4
Rounds 21-40 N3I N3I SC3 N3D N3D SC3 S3 S3
Rounds 41-60 SC3 SC3 - SC3 SC3 - SC3’ SC3’
# Sessions 4 4 3 4 4 3 3 5
# Participants 48 48 36 48 48 36 36 60
# Markets in B1 24 12 12 24 12 12 18 15

Table D.2: Random effects GLS regression. Standard errors are clustered on the group
level. Data from all rounds.

Increasing Decreasing
DV: r DV: ϕN DV: ϕW DV: r DV: ϕN DV: ϕW

3-firm market 0.0412 -0.110 -0.0659 -0.0193 0.0516 0.0309
(1.61) (-1.61) (-1.61) (-0.44) (0.44) (0.44)

4-firm market 0.000326 -0.000868 -0.000521 0.0375 -0.1000 -0.0600
(0.01) (-0.01) (-0.01) (1.33) (-1.33) (-1.33)

1/Round 0.00697 -0.0186 -0.0112 -0.0834˚˚ 0.222˚˚ 0.133˚˚

(0.23) (-0.23) (-0.23) (-2.82) (2.82) (2.82)
Constant 1.024˚˚˚ -0.0651 0.361˚˚˚ 0.953˚˚˚ 0.124 0.475˚˚˚

(49.51) (-1.18) (10.90) (34.52) (1.69) (10.74)
N 2640 2640 2640 2640 2640 2640

z statistics in parentheses

* p ă 0.05, ** p ă 0.01, *** p ă 0.001
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Table D.3: Random effects GLS regression. Standard errors are clustered on the group
level. Data from rounds 15-20.

Standard Normalized
DV: r DV: ϕN DV: ϕW DV: r DV: ϕN DV: ϕW

3-firm market – – – 0.0322 -0.0858 -0.0515
(0.85) (-0.85) (-0.85)

4-firm market 0.182˚˚˚ -0.418˚ -0.571˚˚˚ 0.0256 -0.0683 -0.0410
(3.79) (-2.56) (-8.07) (0.93) (-0.93) (-0.93)

1/Round 1.861 -6.749 -2.619 -1.574 4.197 2.518
(0.43) (-0.53) (-0.39) (-1.15) (1.15) (1.15)

Decreasing -0.0612˚ 0.163˚ 0.0979˚

labels (-2.40) (2.40) (2.40)
Constant 0.943˚˚˚ 0.187 0.750 1.112˚˚˚ -0.300 0.220

(3.64) (0.24) (1.87) (13.82) (-1.40) (1.71)
N 576 576 576 1584 1584 1584

z statistics in parentheses

* p ă 0.05, ** p ă 0.01, *** p ă 0.001

Table D.4: Goodness of fit and estimated parameter values in QRE and FRE, separately
for standard and normalized treatments.

QRE FRE

Treatment λ̂ LL λ̂ LL
S2 1.482 -2740.24 8.28 -2696.34
S4 1.482 -4561.73 8.28 -4720.376
N2 1.526 -5534.16 7.70 -5365.159
N3 1.526 -4023.46 7.70 -4019.388
N4 1.526 -5279.18 7.70 -5139.97
Total -22138.77 -21941.23
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Figure D.1: Best-fitting QRE estimated separately for standard and normalized treat-
ments (compared to kernel density).
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Figure D.2: Best-fitting FRE estimated separately for standard and normalized treat-
ments (compared to kernel density).
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E Instructions

The original French version of instructions is available on request. We provide an En-

glish translation below. We reproduce only the instructions for the treatments with the

“normalized” design. The only difference in the instructions for the “standard” design is

the cardinality of the strategy space: number “16” in highlighted places was replaced by

“50”.

GENERAL INSTRUCTIONS

Welcome to the Laboratory of Experimental Economics of Nice (LEEN – Nice Lab).

By agreeing to participate in this experiment, you agree with the regulations of the

laboratory, which are available on our website or on request.

In this experiment your decisions will be anonymous and will partly determine your final

payment, therefore read the following instructions carefully. The participation fee of

5 EUR is included in the payoff function. Your earnings will be paid to you individually

and confidentially private once you complete a short questionnaire at the end of the

experiment.

In this experiment you can earn money. During the experiment we will refer to ECU

(Experimental Currency Unit) instead of EUR. The total amount of ECU that you will

have earned during the experiment will be converted into cash and paid individually at

the end of the experiment. The conversion rate used to convert your ECU into your cash

payment will be 150 ECU = 1 EUR.

We ask you not to communicate or to disturb the other participants. We also ask you to

turn off your mobile phones and not use them during the experiment.

In these rules are not followed, the experiment may be stopped and all payments canceled.

If you encounter a technical problem, we ask you to raise your hand silently and wait for

the experimenter.

All the participants with whom you interact during this experiment will receive the same

instructions and participate in the same experiment.

DESCRIPTION OF THE EXPERIMENT

The experiment will have several parts. Each part will consist of 20 rounds. At the end

of the experiment one round from each part will be randomly selected for payment. All
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rounds have an equal chance to be selected. Your earnings from the selected rounds will

be added up, converted into cash and paid to you in private.

In each round you will be matched with other participants. At the start of each part you

will be informed about how many participants you will be playing with. You will choose

a number (between 0 and 16), which we will call “your action”. Every other participant

will choose an action at the same time. Your payoff will depend on your action and on the

average action of all other participants with whom you were matched. In each round, you

will have 30 seconds to make a decision. To make a choice, you must enter your action

into the field at the top and click “OK” before the time runs out. The participants with

whom you will interact will face the same task as you and will have the same information

and payoff function. The task, the payoff function and the participants with whom you

will interact will be the same in each round of one part. In each new part, you will play

against participants with whom you did not interact in previous parts.

The exact way of how your payoff depends on your action and on the average action of

other participants will be explained using a payoff table and a payoff calculator, which

will be available on the computer screen when you will be making your decision.

• The payoff table shows your payoffs for some combinations of your action and

the average action of other participants.

• The payoff calculator allows you to enter any action for yourself and an average

action of other participants, and displays a payoff that you would receive in that

case.

Starting from round 2, you will also be informed about your payoff in the previous round.

Furthermore, you will have an option to view the following additional information:

1. Average choices and their history. This option gives you information about

the average choice of other participants and your payoff in the previous round, as

well as in all earlier rounds of that part.

2. Individual choices and payoffs. This option gives you information about the

choices and payoffs of each member in your group, including yourself.

You will be able to switch between these options using buttons on your computer screen.

In addition, after the first round of each part we will ask you to guess the average action

of other participants in that round. The closer your guess is to the average choice of
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other participants, the higher will be your payment. If your guess is G and the actual

average action of other participants is D, your payment will be higher the smaller is the

absolute difference between G and D (denoted |G ´D|). In particular, your payoff will

be:
´

1´ |G´D|
16

¯

˚ 100 ECU. Notice that if your guess is exactly equal to the average

choice (G´D “ 0), you will receive 100 ECU. At the end of the experiment one of these

tasks will be randomly chosen. The payment from the chosen task will be added to your

earnings.

At the end of all parts you will be informed about your payoff in ECU from the rounds

that were randomly selected for payment. Payoff from these rounds will be summed up,

converted into EUR and paid in private once you complete a short questionnaire. In the

questionnaire you will have a chance to make additional income which will be added to

your earnings. Please stay seated until we ask you to come to receive the earnings.

If you have any further questions, please raise your hand now. The experiment will start

once everyone has finished reading the instructions.
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F Payoff Tables

Table F.1: Payoffs in N2, N3 and N4 treatments.

Average output chosen by opponents
Output 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

8 514 490 466 442 418 394 370 346 322 298 274 250 226 202 178 154 130
9 553 526 499 472 445 418 391 364 337 310 283 256 229 202 175 148 121
10 590 560 530 500 470 440 410 380 350 320 290 260 230 200 170 140 120
11 625 592 559 526 493 460 427 394 361 328 295 262 229 196 163 130 119
12 658 622 586 550 514 478 442 406 370 334 298 262 226 190 154 118 118
13 689 650 611 572 533 494 455 416 377 338 299 260 221 182 143 117 117
14 718 676 634 592 550 508 466 424 382 340 298 256 214 172 130 116 116
15 745 700 655 610 565 520 475 430 385 340 295 250 205 160 115 115 115
16 770 722 674 626 578 530 482 434 386 338 290 242 194 146 114 114 114
17 793 742 691 640 589 538 487 436 385 334 283 232 181 130 113 113 113
18 814 760 706 652 598 544 490 436 382 328 274 220 166 112 112 112 112
19 833 776 719 662 605 548 491 434 377 320 263 206 149 111 111 111 111
20 850 790 730 670 610 550 490 430 370 310 250 190 130 110 110 110 110
21 865 802 739 676 613 550 487 424 361 298 235 172 109 109 109 109 109
22 878 812 746 680 614 548 482 416 350 284 218 152 108 108 108 108 108
23 889 820 751 682 613 544 475 406 337 268 199 130 107 107 107 107 107
24 898 826 754 682 610 538 466 394 322 250 178 106 106 106 106 106 106

Table F.2: Payoffs in S2 treatment.

Average output chosen by opponents
Output 0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0

0 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130
2.5 200 197 195 193 191 188 186 184 182 179 177 175 173 170 168 166 164 161 159 157 155
5 265 260 256 251 247 242 238 233 229 224 220 215 211 206 202 197 193 188 184 179 175

7.5 326 319 312 305 299 292 285 278 272 265 258 251 245 238 231 224 218 211 204 197 191
10 382 373 364 355 346 337 328 319 310 301 292 283 274 265 256 247 238 229 220 211 202

12.5 434 422 411 400 389 377 366 355 344 332 321 310 299 287 276 265 254 242 231 220 209
15 481 467 454 440 427 413 400 386 373 359 346 332 319 305 292 278 265 251 238 224 211

17.5 524 508 492 476 461 445 429 413 398 382 366 350 335 319 303 287 272 256 240 224 209
20 562 544 526 508 490 472 454 436 418 400 382 364 346 328 310 292 274 256 238 220 202

22.5 596 575 555 535 515 494 474 454 434 413 393 373 353 332 312 292 272 251 231 211 191
25 625 602 580 557 535 512 490 467 445 422 400 377 355 332 310 287 265 242 220 197 175

27.5 650 625 600 575 551 526 501 476 452 427 402 377 353 328 303 278 254 229 204 179 155
30 670 643 616 589 562 535 508 481 454 427 400 373 346 319 292 265 238 211 184 157 130

32.5 686 656 627 598 569 539 510 481 452 422 393 364 335 305 276 247 218 188 159 130 118
35 697 665 634 602 571 539 508 476 445 413 382 350 319 287 256 224 193 161 130 117 117

37.5 704 670 636 602 569 535 501 467 434 400 366 332 299 265 231 197 164 130 117 117 117
40 706 670 634 598 562 526 490 454 418 382 346 310 274 238 202 166 130 116 116 116 116

42.5 704 665 627 589 551 512 474 436 398 359 321 283 245 206 168 130 115 115 115 115 115
45 697 656 616 575 535 494 454 413 373 332 292 251 211 170 130 114 114 114 114 114 114

47.5 686 643 600 557 515 472 429 386 344 301 258 215 173 130 113 113 113 113 113 113 113
50 670 625 580 535 490 445 400 355 310 265 220 175 130 112 112 112 112 112 112 112 112
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Table F.3: Payoffs in S4 treatment.

Average output chosen by opponents
Output 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130
2 286 274 262 250 238 226 214 202 190 178 166 154 142 130 128 128 128 128 128 128 128 128 128 128 128 128
4 434 410 386 362 338 314 290 266 242 218 194 170 146 126 126 126 126 126 126 126 126 126 126 126 126 126
6 574 538 502 466 430 394 358 322 286 250 214 178 142 124 124 124 124 124 124 124 124 124 124 124 124 124
8 706 658 610 562 514 466 418 370 322 274 226 178 130 122 122 122 122 122 122 122 122 122 122 122 122 122
10 830 770 710 650 590 530 470 410 350 290 230 170 120 120 120 120 120 120 120 120 120 120 120 120 120 120
12 946 874 802 730 658 586 514 442 370 298 226 154 118 118 118 118 118 118 118 118 118 118 118 118 118 118
14 1054 970 886 802 718 634 550 466 382 298 214 130 116 116 116 116 116 116 116 116 116 116 116 116 116 116
16 1154 1058 962 866 770 674 578 482 386 290 194 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114
18 1246 1138 1030 922 814 706 598 490 382 274 166 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112
20 1330 1210 1090 970 850 730 610 490 370 250 130 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110
22 1406 1274 1142 1010 878 746 614 482 350 218 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108
24 1474 1330 1186 1042 898 754 610 466 322 178 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106
26 1534 1378 1222 1066 910 754 598 442 286 130 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104
28 1586 1418 1250 1082 914 746 578 410 242 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102
30 1630 1450 1270 1090 910 730 550 370 190 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
32 1666 1474 1282 1090 898 706 514 322 130 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98
34 1694 1490 1286 1082 878 674 470 266 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
36 1714 1498 1282 1066 850 634 418 202 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94
38 1726 1498 1270 1042 814 586 358 130 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
40 1730 1490 1250 1010 770 530 290 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
42 1726 1474 1222 970 718 466 214 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88
44 1714 1450 1186 922 658 394 130 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86
46 1694 1418 1142 866 590 314 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84
48 1666 1378 1090 802 514 226 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82
50 1630 1330 1030 730 430 130 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
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G Screenshots

Figure G.1: Payoff table in normalized treatments.

Figure G.2: Payoff calculator in normalized treatments.
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Figure G.3: Feedback about individual choices and payoffs in normalized treatments.

Figure G.4: Feedback about the history of own choices and payoffs in previous rounds.
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