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Abstract
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as inferior technologies (Arthur, 1989) or inefficient economic institutions (North, 1990).
To calculate the conditions under which lock-in can be overcome, we develop a solution
concept that makes ex-ante predictions about the adaptation process following lock-in in
a critical mass game. We assume that some players are myopic, forming beliefs according
to weighted fictitious play, while others are sophisticated, anticipating the learning process
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possible. Three types of equilibria may exist: in the first type lock-in is sustained, while in
the other two types lock-in is overcome. We determine the existence conditions for each of
these equilibria and show that the equilibria in which lock-in is overcome are more likely
and the transition is faster when sophisticated players have a longer planning horizon, or
when the history of inefficient coordination is shorter.
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1. Introduction

Research in natural and social sciences identified the presence of alternative stable
states in many important settings.1 The main problem in these situations is the emergence
of an inefficient state,2 or “inefficient lock-in”, from which no individual has incentives
to deviate. Lock-in has been identified as the primary cause of inefficient social customs
(Akerlof, 1980), inefficient economic and political institutions (North, 1990) and inefficient
technologies (Shapiro and Varian, 1999; Cowan, 1990; David, 1985). For example, employ-
ees might tolerate misconduct, overwork or use inefficient procedures and technologies as
long as sufficiently many others engage in such behavior. Lock-in might be prevented, but
policy makers often deal with situations in which lock-in has already occurred, and it is
important to know how it can be overcome. This paper studies whether lock-in can be
endogenously overcome in a population of sophisticated and myopic agents and identifies
how the likelihood and the speed of such transitions depend on the parameters of the game.

No previous literature has addressed the question of whether the presence of multiple
sophisticated players can help overcome inefficient lock-in. Game theory can make predic-
tions about whether lock-in will occur (Harsanyi and Selten, 1988, Kandori et al., 1993,
Young, 1993), but not whether it can be overcome, because the predictions of standard
solution concepts are invariant to the history of play. The question of how to anticipate and
avoid or facilitate transitions between states has been studied in other disciplines,3 often
using models with adaptive agents from complexity science (Gao et al., 2016, Battiston
et al., 2016). However, these models cannot predict whether lock-in will persist if agents
are strategic and farsighted, as they are in human societies.

We are able to model and study lock-in through the interaction of two types of play-
ers, “myopic” and “sophisticated”. Myopic players use adaptive learning: they form be-
liefs about the actions of other players based on observed history and choose the myopic
best-response. Inefficient lock-in is modeled through the beliefs of myopic players, who
experienced a history of inefficient coordination. Belief-based learning by myopic players
creates incentives for sophisticated players to use “strategic teaching”, that is to deviate
from the inefficient state to induce a future deviation by myopic players. Sophisticated
players anticipate how their actions will affect subsequent beliefs and actions of myopic
players, and our solution concept requires the choice path of sophisticated players to be
optimal given the choices of all other players. A combination of game-theoretic reasoning
and adaptive learning generates predictions about the occurrence and speed of transitions
between stable states, in contrast to models with only strategic or only adaptive players,

1Examples include ecosystems such as forests (Hirota et al., 2011), coral reefs (Nyström et al., 2000) and
lakes (Scheffer et al., 1993); mood (van de Leemput et al., 2014); unemployment (Cooper and John, 1988;
Ball and Romer, 1991); political institutions (North, 1990; Greif and Laitin, 2004); bank runs (Diamond
and Dybvig, 1983); revolts (Kuran, 1989); technological standards (David, 1985; Arthur, 1989).

2We use the term “state” rather than “equilibrium” when referring to the Nash equilibrium of a stage
game to avoid confusion with the repeated game equilibrium.

3Scheffer et al. (2009), Scheffer et al. (2012), Folke et al. (2004).
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which cannot make such predictions.4 We show that three types of outcomes are possi-
ble on the equilibrium path: sophisticated players might deviate from the inefficient state
immediately, after a delay, or they might never deviate. No player ever deviates from the
efficient state, therefore inefficient lock-in is overcome in the first two cases, but not in
the third. We specify the existence conditions and the speed of transition for each equi-
librium type, obtaining testable predictions about the behavioral patterns5 and about the
comparative statics.6

Models with adaptive and sophisticated players have been used in the literature to
address issues other than lock-in. Camerer et al. (2002) and Chong et al. (2006) use
a sophisticated experience-weighted attraction (EWA) model in which some players are
adaptive (as in Camerer and Ho, 1999), while others are sophisticated, anticipate the
behavior of adaptive players and use strategic teaching. Sophisticated EWA can be used
to explain why sophisticated borrowers repay loans to adaptive lenders in early periods to
secure loans in later periods of a repeated trust game. A simplified version of sophisticated
EWA is used by Brandts et al. (2016) to explain why players choose to lower the effort
cost of other group members in a minimum effort game following coordination failure. The
learning model in Brandts et al. (2016) assumes that unsophisticated types best-respond to
the distribution of actions observed in the previous round, while sophisticated types expect
all others to be unsophisticated, therefore efficient coordination in future rounds can be
facilitated by lowering the effort cost of other group members. Hyndman et al. (2009)
explain behavior in two-player coordination games using a model that combines adaptive
players, who follow weighted fictitious play, with farsighted players, who anticipate the
learning process and maximize the discounted sum of expected payoffs.7

Our model rests on the concept of strategic teaching, just as the sophisticated EWA
and other models discussed above, but we use a different approach for a different purpose
and therefore make three important contributions to the literature. First, we use strategic
teaching to refine rather than alter the predictions of standard solution concepts. Strategic
teaching has been previously used to explain deviations from the Nash equilibrium (e.g.
repaying loans in early periods, as in Camerer et al., 2002, Chong et al., 2006, or helping
others at a cost to oneself, Brandts et al., 2016). In the setting we study, standard solution
concepts generate vacuous predictions, therefore we use strategic teaching to refine the
paths of play that can be supported in equilibrium. As a result, we develop the first game-

4Solely adaptive models (see Fudenberg and Levine, 1998, Camerer, 2003) predict no deviations from the
inefficient state once it has been implemented. At the other extreme, Nash equilibrium and its refinements
are invariant to the history of play, therefore there will always be some repeated game equilibria in which
lock-in is overcome, and others in which lock-in persists.

5For example, only efficiency-enhancing transitions are predicted to occur; sophisticated players will
deviate from the inefficient state earlier than myopic players.

6For example, a longer history of inefficient coordination and a shorter planning horizon should increase
the likelihood that lock-in will persist, while a larger number of sophisticated players should speed up the
transition to the efficient state.

7Terracol and Vaksmann (2009) and Hyndman et al. (2012) use similar models to study strategic
teaching in different games.
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theoretic solution concept that can make predictions about the likelihood and timing of
transitions between stable states. Second, we address the problem of strategic uncertainty,
devising a method to apply models of strategic teaching to games with multiple strategic
agents. Previously, the scope of applications was limited because the existing models by-
passed the problem of strategic uncertainty by assuming that sophisticated players expect
all opponents to be myopic.8 We show that the issue of strategic uncertainty can be re-
solved using standard game-theoretic tools, resulting in a model that is both more flexible
and more realistic, and therefore could potentially fit data better. Third, the models in
the previous literature can explain experimental data only ex-post, while we make testable
ex-ante predictions. The characterization of the solution concept allows us to study its
properties, such as the speed of convergence, and the conditions under which each equilib-
rium type exists, generating novel testable predictions. In the previous literature, ex-ante
predictions could be obtained only using simulations with specific parameter values (e.g.
Chong et al., 2006).

Compared to the previous models of strategic teaching, we make different assumptions
about the behavior of the two types of players, because stronger assumptions are needed to
obtain a tractable model. First, we characterize the sophisticated player equilibrium only
for critical mass games. Our intention is not to devise a solution concept that explains be-
havioral regularities in different games (although it could be characterized in other games),
but rather a model that can explain how and when inefficient lock-in can be overcome. Sec-
ond, we assume that myopic players update beliefs using weighted fictitious play (just as
in Hyndman et al., 2009, and Ellison, 1997) instead of EWA (Camerer et al., 2002). We
use a belief-based updating rule because under the assumptions made here, sophisticated
players cannot directly influence the payoffs of the myopic players; therefore, if myopic
players used a payoff-based learning rule (such as reinforcement learning, Erev and Roth,
1998), strategic teaching would have no effect. It has also been found that belief-based
models can explain behavior in experiments with coordination games,9 and they typically
fit better than other models (Ho and Weigelt, 1996, Battalio et al., 1998). Weighted fic-
titious play is sufficiently rich to accurately explain actions and beliefs in critical mass
game experiments (Masiliūnas, 2017), but it is also sufficiently simple, allowing us to set
up a tractable model of strategic teaching. Other updating rules might be more attractive
from a descriptive viewpoint (such as EWA, Camerer and Ho, 1999) or a normative view-
point (standard Bayesian updating using a Dirichlet prior), but they could not be used to
characterize equilibria with the methods used in this study.

Other papers study the interaction between farsighted and myopic players using dif-
ferent methods and in different games, and are therefore less related to our study than
the strategic teaching literature. Ellison (1997) models a population of adaptive players,

8Sometimes this assumption was made explicitly (e.g. Brandts et al., 2016), other times only two-player
games were considered (e.g. Camerer et al., 2002, Hyndman et al., 2009)

9Examples include pure coordination games (Van Huyck et al., 1997); coordination games with Pareto-
ranked equilibria (Sefton, 1999; Cheung and Friedman, 1997); critical mass games (Masiliūnas, 2017);
order statistic games (Crawford, 1995).
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who learn according to fictitious play and are repeatedly paired to play a binary choice
coordination game. Adding one rational player to the population of adaptive players can
change the outcome from coordination on the inefficient equilibrium to coordination on the
efficient one, as long as the number of players is fixed and the rational player is sufficiently
patient. Acemoglu and Jackson (2014) develop an overlapping generations model that
shows how a social norm of low cooperation can be overturned by a single forward-looking
player. Schipper (2019) uses an optimal control model with two players and shows how a
strategic player can control an adaptive player in repeated games with strategic substitutes
or strategic complements. Mengel (2014) studies adaptive players who are also forward-
looking and finds that in two-player coordination games the efficient equilibrium may be
stochastically stable, in contrast to the case with only adaptive players. Models studied in
these papers do not deal with strategic uncertainty, and therefore could not be applied to
games with multiple sophisticated players.

The rest of the paper is organized as follows. Section 2 provides a general defini-
tion of our solution concept, the “sophisticated player equilibrium”. The entire section 3
constructs the characterization of this solution concept in a critical mass game, which is
defined in section 3.1. Section 3.2 specifies the behavior of myopic players, conditional on
the observed history. Section 3.3 refines the behavior of sophisticated players, under the
assumptions that are discussed in section 3.4. Section 3.5 shows that the efficient state
is absorbing, and is implemented when myopic players deviate from the inefficient state.
Section 3.6 specifies this switching time of myopic players, as well as the payoffs received
by sophisticated players. Section 3.7 characterizes the three types of equilibria. Section
3.8 illustrates the theoretical results using a numerical example. Section 3.9 shows how
the speed of transition and the types of equilibria that exist respond to changes in game
parameters. Section 4 concludes.

2. Sophisticated Player Equilibrium

Consider N players, indexed by i ∈ N ≡ {1, 2, . . . , N}, who play a repeated game of
duration T in continuous time. The duration of the game could be determined by length of
the interaction, or by the length of the planning horizon of sophisticated players.10 At each
point in time t ∈ [0, T ] players choose an action from a stage game action space {A,B}.
The two actions can be though of as two competing technologies, with coordination on A
being more efficient than on B.11 We model inefficient lock-in by assuming that all players
were playing action B prior to time 0. The duration of this history is Th ∈ (0,∞).

10We will typically refer to T as the length of the planning horizon, because in many situations the
actual duration of the interaction is unknown or uncertain. Player’s behavior therefore depends on the
subjective belief about the duration of interaction, or the planning horizon that the player can take into
account. Even when the game duration is known, as in laboratory experiments, players often do not plan
ahead for the entire duration of the game (e.g. see Johnson et al., 2002, Mantovani, 2016).

11For the lack of a better term, we will sometimes refer to action A as an “efficient” and to B as an
“inefficient” action. These labels refer to the efficiency of the state that would be implemented if the action
was chosen by all players.
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Table 1: Main variables that describe the choices of sophisticated and myopic players.

Variable Sophisticated Myopic
Number of players S N − S
Characteristic member s ∈ S m ∈ (N \ S)
Choice plan/response function t→ {A,B} cs ∈ C rm(cS)
Vector of mappings for all players of this type cS ≡ {cs|s ∈ S} ∈ CS rM(cS) ≡ {rm|m ∈ (N \ S)}
Action of player s/m at time t cs(t) ∈ {A,B} rm(t, cS) ∈ {A,B}
Action profile of all players of this type in t cS(t) ∈ {A,B}S rM(t, cS) ∈ {A,B}N−S
Choice plan of all sophisticated players besides s c−s ∈ CS−1 –
Action profile of all sophisticated players besides s c−s(t) ∈ {A,B}S−1 –
Action profile of all other players {c−s(t), rM(t, cS)} r−m(t, cS) ∈ {A,B}N−1

Number of all other players who choose A in t α({c−s(t), rM(t, cS)}) α(r−m(t, cS))
Belief of myopic player m in t – xm(t) ∈ [0, 1]
Subjective expected payoff of playing action a in t – SEP (a, xm(t))
Realized payoff in t π[cs(t), {c−s(t), rM(t, cS)}] π[rm(t, cS), r−m(t, cS)]

We study the population composed of S sophisticated and N − S myopic players.
Sophisticated players are indexed by s ∈ S and myopic players by m ∈ (N \ S). The
two types of players follow different choice rules, respectively denoted by rm and cs, which
prescribe an action for each moment in time. We will refer to rm as a response function of
a myopic player m and to cs as a choice plan of a sophisticated player s. Denote the action
of player m at time t by rm(t) and the action of player s by cs(t). Denote the combination
of choice plans for all sophisticated players except s by c−s and the combination of choice
plans of all sophisticated players, or a choice plan profile, by cS, with cS(t) denoting
the action profile of sophisticated players at time t. Denote the combination of response
functions of all myopic players by rM(cS), with rM(t, cS) denoting the action profile of
myopic players at time t.12 Denote the action profile of all players besides m by r−m(t, cS).
Define a function that counts the number of players who choose A in an action profile c′ by
α(c′) = |c ∈ c′ : c = A|. The response functions of myopic players are determined by the
history of play, while the choice plans of sophisticated players must be optimal given the
choices of all other players. The payoff function π maps player’s action and the vector of
the actions of all other players into a payoff. The payoff at time t is π[rm(t, cS), r−m(t, cS)]
for a myopic player and π[cs(t), {c−s(t), rM(t, cS)}] for a sophisticated player. Table 1
displays the notation of choice plans, response functions and the spaces of these functions
and variables.13

Belief of a myopic player is a probability assigned to the event that a randomly
chosen other group member chooses action A. Denote the belief of a myopic player m at
time t by xm(t). Belief formation is assumed to follow a one parameter weighted fictitious

12All myopic players share the same response function and observed history, therefore their choices will
be identical at any point in time.

13We denote a vector containing element a repeated k times by {(a)×k}, and the set of vectors of length
j containing all possible combinations of elements A and B by {A,B}j .
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play model,14 originally proposed by Cheung and Friedman (1997) and adjusted to fit the
N -person games studied here.15 Beliefs are formed according to the following rule:

xm(t) =

∫ t
k=0

γk α(r−m(t−k,cS))
N−1

dk∫ t+Th
k=0

γk dk
(1)

The integral in the numerator measures the weighted frequency of action A choices
by all other players. When k = 0, the integrand in the numerator reduces to α(r−m(t,cS))

N−1
,

the relative frequency of action A played at time t. As k increases, observed relative
frequencies in more distant past are multiplied by the discount factor γ. The summation
runs backwards to time 0. Prior to time 0, only action B has been played, therefore this
history does not increase the frequency of observed action A. The denominator normalizes
the expression to the range between 0 and 1, thus the belief can be interpreted as a weighted
average of the relative frequency of action A.

The γ parameter measures the rate at which old observations are forgotten. We assume
that γ ∈ (0, 1), where values close to 1 indicate that all past observations receive similar
weights, while values close to 0 indicate that only the most recent experience is taken
into account. Weighted fictitious play therefore generalizes two popular belief learning
models: fictitious play, in which beliefs are proportional to the empirical frequency of the
actions played over all past periods (γ = 1), and Cournot best-response, in which beliefs
are proportional to the empirical frequency in the last round (γ = 0).

Subjective expected payoff is the payoff that a myopic player expects to receive by
playing action a ∈ {A,B}, conditional on the player’s expectations about the behavior of
other group members, measured by the subjective belief xm(t). Subjective expected payoff
is equal to the realized payoff if beliefs are correct, but this will generally not be the case in
the short run because beliefs are formed from the observed history of play. To calculate the
subjective expected payoff, player’s beliefs are used to assign a probability to each action

14Fictitious play corresponds to Bayesian updating of the probability that any group member will choose
A, using a Dirichlet prior and assuming that the choice of each group member was independently drawn
from the distribution about which players are learning.

15In the original weighted fictitious play, beliefs about the likelihood that the opponent will choose a
given action are formed by counting the empirical frequency of this action played in the past. We extend
the model that was initially specified for two-player games to N -person games by assuming that a joint
distribution of choices is used to form beliefs about the actions of group members, but players do not
distinguish between the identities of others. Beliefs are therefore homogeneous (Rapoport, 1985; Rapoport
and Eshed-Levy, 1989): a single belief is formed about the probability that any other player will choose
A. There also are other ways how weighted fictitious play could be extended to N -person games. One
way could be to assume that players form beliefs about the joint distribution of the actions of all others
and update it using observed aggregate feedback: for example, Crawford (1995) assumes that players form
beliefs and observe feedback about an order statistic of all the choices. Another way is to assume that
separate beliefs are formed about every other player j based on the empirical distribution of j’s choices
(e.g. Monderer and Shapley, 1996). We combine the two approaches by assuming that players use the joint
distribution of choices to form beliefs about the action of any opponent, but do not distinguish between
their identities.
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profile of other group members, and payoffs at all possible action profiles are summed up
using these probabilities as weights:

SEP (a, xm(t)) =
∑

c′∈{A,B}N−1

Pr[r−m(t, cS) = c′|xm(t)]π(a, c′) =

=
∑

c′∈{A,B}N−1

xm(t)(α(c′))(1− xm(t))(N−1−α(c′))π(a, c′) (2)

Response function rm(t, cS) prescribes an action for a myopic player m at any point
in time t ∈ [0, T ], conditional on the profile of choice plans chosen by sophisticated players,
cS. We assume that myopic players choose the action that maximizes the flow of subjective
expected payoff and ties are broken in favour of action A:

rm(t, cS) =

{
A if SEP (A, xm(t)) ≥ SEP (B, xm(t))
B otherwise

(3)

Choice plans of sophisticated players (cS) are explicitly included in the response func-
tion to make it transparent that myopic player actions can be affected by sophisticated
players. Note that the response function depends only on the current round payoffs and
beliefs, which are determined by observed history, therefore it is possible to anticipate the
behavior of myopic players at any history. Since all myopic players observe the same his-
tory and form beliefs using the same weighted fictitious play rule, they will have the same
beliefs and therefore take the same actions.

Sophisticated players anticipate the learning process of myopic players and plan for
the entire game in advance, choosing the choice plan for the interval [0, T ]. Variable T mea-
sures the perceived duration of the game, which can be limited by the objective duration
of the game, or by the ability of players to plan ahead.

Choice plan cs prescribes an action for a sophisticated player s at any point in time
t ∈ [0, T ]. Denote the set of all choice plans by C. The choice plan is assumed to be an open-
loop strategy, which depends only on time and not on observed history.16 Sophisticated
players face no strategic uncertainty about the actions of myopic players, but they face
uncertainty about the actions of the other sophisticated players. Payoffs associated with
a choice plan cs depend on the vector of choice plans of the other sophisticated players,
c−s, and on the response function of myopic players, rM(t, cS), which also depends on the
choice plans of all sophisticated players.

16Traditionally, a strategy is assumed to be closed-loop, prescribing an action for each information set. If
strategies are defined this way, then almost any sequence of actions could be supported on the equilibrium
path in coordination games such as the one analyzed here. This occurs because all players could use
strategies that prescribe playing the efficient equilibrium only if a particular sequence of actions has been
observed previously. Note that sophisticated players are assumed to know about the decision-making
process of the myopic players, and they therefore can anticipate beforehand what these choices will be for
each combination of sophisticated player strategies.
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Since the sophisticated players can perfectly anticipate the actions of myopic players,
the game can be reduced to a static game between sophisticated players. Nash equilibrium
is the standard solution concept in static games, and we follow the logic of Nash equilibrium
by requiring equilibrium choice plans to be mutual best-responses.

Definition 1. A combination of choice plans c∗S = {(c∗s)×S} is a symmetric sophisticated
player equilibrium if for each player s ∈ S, c∗s satisfies:

∫ T

0

π[c∗s(t), {c∗−s(t), rM(t, {c∗s, c∗−s})}] dt ≥
∫ T

0

π[cs(t), {c∗−s(t), rM(t, {cs, c∗−s})}] dt (4)

∀cs ∈ C, c∗−s = {(c∗s)×(S−1)}, rm(t, cS) is defined in (3)

If there were no myopic players, equation (4) would reduce to the standard Nash equi-
librium. If all players were myopic, equation (4) would not be needed because the choices
of all players would be calculated using weighted fictitious play. We will look at an inter-
mediate case where both myopic and sophisticated players are present.

The assumption of two distinct types of players, as well as the specific assumptions
about their behavior, is motivated by previous experimental evidence. Evidence for the
dichotomy between myopic and sophisticated types is found in a turnaround game, where
a sharp distinction is observed between “leaders”, who initiate the transition, and “lag-
gards”, who follow leaders (Brandts and Cooper, 2006, Brandts et al., 2007); in a planning
task, where participants either plan completely, or do not plan at all (Hey and Knoll, 2007);
and in a critical mass game, where farsighted players are much more likely to deviate from
the inefficient convention and to spend more time thinking ahead (Masiliūnas, 2017). Evi-
dence for the existence of sophisticated players, who engage in strategic teaching, has been
observed in repeated two player games with two Pareto-ranked Nash equilibria (Hyndman
et al., 2009), three non Pareto-ranked equilibria (Terracol and Vaksmann, 2009) and a
unique equilibrium (Hyndman et al., 2012). Additional evidence for strategic teaching in
coordination games comes from increased rates of efficient coordination when the shadow
of the future is increased (Berninghaus and Ehrhart, 1998), or when the cost to disclose
one’s action is decreased (Masiliūnas, 2017). Strategic teaching has also been proposed as
a likely explanation for deviations from the inefficient state in studies that observe such
deviations (Brandts and Cooper, 2006, Devetag, 2003, Friedman, 1996).

3. Sophisticated Player Equilibria in a Critical Mass Game

This section will characterize the symmetric sophisticated player equilibria for a re-
peatedN -person critical mass coordination game. We are particularly interested in whether
there are equilibria in which lock-in is overcome, and if so, how long this process takes.

The construction of the sophisticated player equilibrium involves several steps. Propo-
sition 1 shows that myopic players will choose the efficient action if their beliefs exceed
a certain threshold. Furthermore, in the sophisticated player equilibrium myopic players
will switch from an inefficient to the efficient action at most once. The single switch and
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the assumption that there are sufficiently many myopic players means that the efficient
state is absorbing, therefore the switching time is the only information needed for sophis-
ticated players to calculate their payoffs. Proposition 3 shows exactly how the switching
time of myopic players can be calculated if beliefs were formed using weighted fictitious
play. The switching time depends on the strategies taken by sophisticated players, which
could prescribe many switches from one action to the other. The task of specifying the
switching time is therefore greatly simplified by Proposition 2, which shows that only the
sophisticated player strategies prescribing at most one switch from the inefficient to the
efficient action survive the elimination of strictly dominated strategies, allowing a strategy
to be identified by the switching time.

The ability to anticipate the speed of a transition allows sophisticated players to calcu-
late how their payoffs depend on their own strategies and on the strategies chosen by the
other sophisticated players. The mapping from strategies to payoffs specified in Corollary 1
is used to identify strategy profiles in which all sophisticated players are best-responding
to each other. Three types of symmetric equilibria are possible: sophisticated players may
play the efficient action right away, they may switch to the efficient action later or they
may never switch. In the first two cases myopic players eventually start playing the effi-
cient action, while in the third case all players always choose the inefficient action. Which
types of equilibria exist and how long a transition to the efficient state takes depends on
the game parameters, as specified in Propositions 4, 5 and 6. Finally, Corollaries 2, 3 and
4 show how these existence conditions depend on the history of inefficient coordination,
length of the planning horizon of sophisticated players and the player composition.

3.1. Payoffs in a Critical Mass Game

Recall that we defined a sophisticated player equilibrium for a class of games with n
players and an action space {A,B}. A special case in this game class is a critical mass
game, in which payoffs depend on player’s action, denoted by a, and on the total number of
other group members who chose action A, denoted by α(c′), where c′ is the action profile
of all other players:17

π(a, c′) =


H if α(c′) ≥ θ and a = A
0 if α(c′) < θ and a = A
M if α(c′) ≥ θ and a = B
L if α(c′) < θ and a = B

(5)

We require H > M and L > 0 for the game to belong to the class of coordination
games. The coordination requirement is determined by an exogenous threshold θ: payoff
from choosing A exceeds the payoff from B if at least θ other group members choose A.
The stage game contains two stable states in pure strategies: in one all players choose A,
in the other all players choose B. We assume that states are Pareto-ranked by requiring

17The payoff flow of myopic and sophisticated players, calculated using the payoff function from equa-
tion (5) and the choice variables of both player types, is displayed in table 1.
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that H > L. Finally, we assume that M ≥ L, so that players who choose B also prefer a
situation in which the threshold is exceeded.

Assumption 1: H > M ≥ L > 0.
In addition, we assume that there are at least 2 sophisticated players so that the

equilibrium could be defined using equation (4). We also assume that the number of
myopic players is sufficiently large to implement the efficient state, and the number of
sophisticated players is small enough so that sophisticated players on their own could not
implement the efficient state.

Assumption 2: 2 ≤ S < θ ≤ N − S.
The importance of these two assumptions will be discussed in section 3.4.

3.2. Response Function of Myopic Players

Myopic players form beliefs about the actions of other players and choose the action that
maximizes immediate payoffs. This subsection specifies this response function rm(t, cS),
which prescribes an action for player m at time t when sophisticated players are using
choice plans cS.

Proposition 1. Suppose that in a game with payoffs defined by (5) at time t myopic player
m holds beliefs xm(t). Then the response function defined in (3) is equivalent to:

rm(t, cS) =

{
A if xm(t) ≥ I−1

L
L+H−M

(θ,N − θ)
B otherwise

(6)

where I−1 is the inverse of an incomplete regularized beta function.

Proof: see Appendix B.1.
Proposition 1 states that a myopic player chooses A instead of B if the belief exceeds

I−1
L

L+H−M

(θ,N − θ), a threshold value that depends only on the game parameters. For

brevity, we will refer to this threshold value by I−1. The properties of inverse regularized
beta functions imply that I−1 is increasing in L, M and θ, but decreasing in H and N .

Since the number of myopic players exceeds θ (Assumption 2) and they choose the
same action, the efficient state is implemented when beliefs exceed the threshold. The
next subsection shows that once exceeded, the threshold remains exceeded, therefore the
efficient state is absorbing. To anticipate the state, it is thus sufficient to know the first
time when beliefs reach the threshold value.

3.3. Undominated Choice Plans of Sophisticated Players

Although sophisticated players could use choice plans that prescribe many switches
from one action to the other, we will show that undominated choice plans must prescribe
at most one switch from B to A and no switches from A to B. The strategy space of the
sophisticated players can therefore be restricted to a set of real numbers that denote a
switching time from A to B.
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Definition 2. Denote by Us (for “undominated”) the set of choice plan profiles in which
no sophisticated player is choosing strictly dominated choice plans:

Us = {cS ∈ CS|@c′s ∈ C,@c′′s ∈ cS :∫ T

0

π[c′s(t), {c−s(t), rM(t, {c′s, c−s})}] dt >

∫ T

0

π[c′′s(t), {c−s(t), rM(t, {c′′s , c−s})}] dt, ∀c−s ∈ CS−1}

A choice plan profile is dominated if it is not in set Us, that is if in this choice plan
profile at least one sophisticated player is choosing a dominated choice plan.

We will show that the set of undominated choice plans cannot contain any strategies
that prescribe a switch from A to B. The proof requires two additional lemmas.

Lemma 1. If two choice plans of the sophisticated player prescribe the same action at time
t, the payoff flow is higher for the choice plan that induced higher beliefs of myopic players:

π[c′s(t), {c−s(t), rM(t, {c′s, c−s})}] ≥ π[c′′s(t), {c−s(t), rM(t, {c′′s , c−s})}]
if x′(t) ≥ x′′(t) and c′s(t) = c′′s(t)

where x′(t) is the belief held by myopic players if the sophisticated player uses choice plan
c′s and x′′(t) is the belief if the sophisticated player uses choice plan c′′s .

Proof: see Appendix B.7.
Lemma 1 shows that sophisticated players can only benefit from myopic players as-

signing a higher probability to others choosing A. The proof rests on a finding that higher
beliefs can only increase the number of myopic players choosing A, which can only increase
the payoffs of sophisticated players (from Assumption 1).

Definition 3. Denote by ABM the set of choice plan profiles for sophisticated players with
which myopic players switch from A to B:

ABM = {cS ∈ CS|∃t1, t2 ∈ [0, T ] : t1 < t2, rm(t1, cS) = A, rm(t2, cS) = B}

Lemma 2. All choice plan profiles for sophisticated players with which myopic players
switch from A to B are strictly dominated:

ABM ∩ Us = ∅

Proof: see Appendix B.7.
Lemma 2 shows that if sophisticated players choose undominated choice plans, myopic

players would never switch from A to B. If a switch from A to B was to occur, all myopic
players would switch at the same time, because they share the observed history. For
the switch to occur, the belief must fall below the threshold value, therefore at least one
sophisticated player must be playing B right before the switch – otherwise beliefs would
remain above the threshold. But the choice plan of this sophisticated player would be
dominated, because the player could earn more by instead choosing A before the switch
(playing A generates a payoff flow of H because N − S ≥ θ, from Assumption 2, and
cannot decrease future payoffs, from Lemma 1).
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Definition 4. Denote by ABS the set of choice plan profiles for sophisticated players with
which at least one sophisticated player switches from A to B:

ABS = {cS ∈ CS|∃cs ∈ cS, t1, t2 ∈ [0, T ] : t1 < t2, cs(t1) = A, cs(t2) = B}

Proposition 2. Choice plan profiles for sophisticated players that prescribe a switch from
A to B for at least one sophisticated player are dominated:

ABS ∩ Us = ∅

Proof: see Appendix B.2.
The logic of the proof is as follows: suppose that at some point in time the sophisticated

player switches from A to B. Such a switch could not be optimal if myopic players switched
from B to A at the same time or earlier, because then the sophisticated player could increase
payoffs by never switching to B. If myopic players never switch to A, the sophisticated player
would be better off always playing B. If myopic players switch after the sophisticated player,
payoffs could be strictly increased by teaching less at the start of the game and teaching
more later. Doing so would not reduce the payoffs prior to the switch, but would strictly
decrease the switching time of the myopic players, because weighted fictitious play puts
more weight on recent experience. Consequently, sophisticated players would never switch
from A to B because they would be better off delaying strategic teaching to just before the
predicted switch of myopic players.

3.4. Assumptions

Proposition 2 is the key step towards the characterization of the sophisticated player
equilibrium, reducing the space of undominated sophisticated player strategies to only
those that prescribe a single switch from B to A. We will shortly review the importance of
Assumptions 1 and 2, which are necessary for the proof of Proposition 2.

Assumption 1: H > M ≥ L > 0. Restrictions H > M and L > 0 are needed to set up
the critical mass game. The key assumption is M ≥ L, implying that players who choose B
either prefer the number of A players to exceed the threshold, or are indifferent to it.18 This
assumption is necessary to create incentives for strategic teaching. Lemma 1 would not
hold without Assumption 1, because then higher myopic player beliefs could increase the
number of players choosing A and therefore decrease the payoffs of the sophisticated players
who choose B. Without Lemma 1, we could not prove Lemma 2 because it would not be
possible to construct a choice plan that would dominate a choice plan with which myopic
players switch from A to B. Choice plans constructed following the procedure in the proof
of Lemma 2 increase the beliefs of myopic players, and thus might reduce the payoffs of
sophisticated players who use such choice plans. If such choice plans cannot be constructed,
it cannot be claimed that choice plans that induce myopic players to switch from A to B

18Critical mass games are commonly used to study riots and political revolts (Granovetter, 1978; Ed-
mond, 2013; Kiss et al., 2017; Masiliūnas, 2017), where this assumption usually holds, as the citizens who
do not take part in the revolt are better off when the regime is overthrown.
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are dominated. Identical problems would arise in the proof of Proposition 2, since the
proof relies on constructing choice plans that dominate choice plans with a switch from A
to B. The dominance may not hold because the newly constructed choice plans increase the
beliefs of myopic players and could therefore decrease the payoffs of sophisticated players.

Assumption 2: 2 ≤ S < θ ≤ N − S. The key part of this assumption is that
sophisticated players cannot on their own achieve a transition from one state to the other:
state is inefficient if all myopic players choose B (because S < θ), and efficient if they choose
A (because N−S ≥ θ). Sophisticated players can therefore affect the state only indirectly,
through strategic teaching. If S ≥ θ, sophisticated players could directly implement the
efficient state and our solution concept would reduce to the standard Nash equilibrium. If
N −S < θ, sophisticated players could directly implement the transition from the efficient
to the inefficient state, and such a transition could be supported in equilibrium. This would
not only increase the number of equilibria, but also permit sophisticated players to change
actions multiple times (Proposition 2 would no longer hold), therefore their strategies could
not be described by a single switching time. This can no longer occur when the number of
myopic players exceeds the threshold, because then the transition to the inefficient state
would require myopic players to change their actions from A to B, which takes some time
and sophisticated players could increase payoffs by playing A over this period.

Overall, the failure of either Assumption 1 or Assumption 2 would inhibit the current
approach of reducing the choice plans to those with a single switching point, and therefore
the equilibria could not be characterized with the methods used here.

3.5. Single-switching Choice Plans and Response Functions

Lemma 2 and Proposition 2 show that if sophisticated players do not choose dominated
choice plans, both myopic and sophisticated players will switch from B to A at most once,
thus the equilibrium choice plans and response functions can be described by a scalar
indicating the switching time.

Each choice plan of the sophisticated players must have the following structure on the
equilibrium path:

cs(t) =

{
B if t ∈ [0, ys)
A if t ∈ [ys, T ]

∀cS ∈ Us

Sophisticated players therefore only choose how long to delay strategic teaching, a
variable defined as ys ∈ [0, T ], which will be called a strategy of player s. If ys = T ,
player s never uses strategic teaching.

In principle, to characterize all sophisticated player equilibria we would need to calculate
the sum of payoffs from the entire game for all possible strategy profiles. However, since
we only characterize symmetric equilibria, it is sufficient to specify the payoffs in such
equilibria and in possible unilateral deviations from it. The sum of payoffs from the entire
game will be denoted by Π(y, ȳ), where the player’s strategy is ys = y and the strategies
of the other sophisticated players are y−s = {(ȳ)×(S−1)}. This payoff depends on the
strategies of the sophisticated players, but also on the switching period of the myopic
players, which is a function of the strategies of sophisticated players.
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The switching period of myopic players will be denoted by t̂(y, ȳ) ∈ (0,∞], defined as
the time when the myopic players start playing A.19 Lemma 2 shows that on the equilibrium
path myopic players must switch from B to A at most once, therefore the response function
must have the following structure:

rm(t, cS) =

{
B if t ∈ [0, t̂(y, ȳ))
A if t ∈ [t̂(y, ȳ), T ]

∀cS ∈ Us

The payoff of the sophisticated players can be expressed as a function of the strategies
of the sophisticated players:

Π(y, ȳ) =

∫ T

0

π(ĉ(t, y), {(ĉ(t, ȳ))×(S−1), (ĉ(t, t̂(y, ȳ)))×(N−S)}) dt (7)

where ĉ(t, k) stands for the choice of either a myopic player with a switching period
at time k, or a sophisticated player whose choice plan prescribes a switch from B to A at
time k:

ĉ(t, k) =

{
B if t ∈ [0, k)
A if t ∈ [k, T ]

The next subsection will specify how the switching period of the myopic players and
the payoffs of the sophisticated players depend on the game parameters.

3.6. Switching Period of Myopic Players and Payoffs of Sophisticated Players

The switching period of the myopic players is important because it determines the time
of transition to the efficient state, and therefore the payoffs of the sophisticated players.
The switching period t̂(y, ȳ) is defined as a function of the strategy of one sophisticated
player (y) and all other (S−1) sophisticated players (ȳ). The switching period is calculated
by finding the time at which the beliefs of myopic players reach the threshold value I−1.
The specification consists of four cases, depending on the sequence of events: the switching
period is calculated by t̂1(y, ȳ) if myopic players switch to A after all sophisticated players;
by t̂2(y) if the switch occurs after one but before the other (S − 1) sophisticated players;
by t̂3(ȳ) if the switch occurs after (S − 1) but before the last sophisticated player and it is
equal to infinity if myopic players never switch.

19All myopic players will switch to A at the same time, because they experienced the same history and
use the same weighted fictitious play rule to form beliefs. Note that t̂(y, ȳ) > 0 because equation (1)
implies that xm(0) = 0, thus myopic players choose B at time 0. If t̂(y, ȳ) > T , myopic players will never
be observed switching to A.
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Proposition 3. If one sophisticated player uses strategy ys = y and the other (S − 1)
players use strategies y−s = {(ȳ)×(S−1)}, the switching period of myopic players is:

t̂(y, ȳ) =


t̂1(y, ȳ) if max{y, ȳ} < t̂1(y, ȳ) and S

N−1
> I−1

t̂2(y) if y < t̂2(y) ≤ ȳ and 1
N−1

> I−1

t̂3(ȳ) if ȳ < t̂3(ȳ) ≤ y and S−1
N−1

> I−1

∞ otherwise

(8)

such that

t̂1(y, ȳ) =
log( S

N−1
− I−1)− log(γ−ȳ S−1

N−1
+ γ−y 1

N−1
− γThI−1)

log(γ)
(9)

t̂2(y) =
log( 1

N−1
− I−1)− log(γ−y 1

N−1
− γThI−1)

log(γ)
(10)

t̂3(ȳ) =
log( S−1

N−1
− I−1)− log(γ−ȳ S−1

N−1
− γThI−1)

log(γ)
(11)

Proof: see Appendix B.3.
It is never possible that more than one condition of (8) is satisfied because t̂1(y, ȳ) ≤

t̂2(y) and t̂1(y, ȳ) ≤ t̂3(y) (see Lemma 10 in Appendix B).
The specification of the switching period derived in Proposition 3 is necessary to cal-

culate the payoffs of sophisticated players from the entire game. We specify these payoffs
in a corollary of Proposition 3.

Corollary 1. If a sophisticated player s uses strategy ys = y and the other sophisticated
players use strategies y−s = {(ȳ)×(S−1)}, the total payoff received by player s over period
[0, T ] is:

Π(y, ȳ) =


Π1 = yL+ (T − t̂1(y, ȳ))H if t̂1(y, ȳ) ≤ T , t̂2(y) ≥ ȳ, t̂3(ȳ) ≥ y (12a)

Π2 = yL+ (T − t̂2(y))H if t̂2(y) < ȳ (12b)

Π3 = t̂3(ȳ)L+ (y − t̂3(ȳ))M + (T − y)H if t̂3(ȳ) < y (12c)

Π4 = yL if t̂1(y, ȳ) > T (12d)

where t̂1(y, ȳ), t̂2(y) and t̂3(ȳ) are specified in Proposition 3.

Proof: see Appendix B.5.

3.7. Characterization of Symmetric Sophisticated Player Equilibria

The payoff specification from Corollary 1 transforms the repeated game into a static
game between the sophisticated players. We make predictions in this static game using
the standard solution concept for static games – Nash equilibrium – which requires mutual
best responses for each player. We do so by combining the definition of a symmetric
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sophisticated player equilibrium in equation (4) with the definition of the payoff function
from the entire game in equation (7). A sophisticated player equilibrium is a combination
of strategies (y∗, y∗) that satisfies:

Π(y∗, y∗) ≥ Π(y, y∗), ∀y ∈ [0, T ] (13)

We look at the existence of three types of equilibria: interior solutions with y∗ ∈ (0, T ),
a corner solution with y∗ = 0 and a corner solution with y∗ = T . Equilibria are labeled
according to the time at which sophisticated players start teaching: “immediate teaching”
equilibrium (y∗ = 0), “delayed teaching” equilibrium (y∗ ∈ (0, T )) and “no teaching”
equilibrium (y∗ = T ). Propositions 4, 5 and 6 specify the conditions under which each
type of equilibrium exists.

3.7.1. “Immediate teaching” equilibrium

In the “immediate teaching” equilibrium all sophisticated players switch to A at the
start of the game, so that equilibrium strategies are y∗ = ȳ∗ = 0.

Proposition 4. A combination of strategies (0, 0) is a symmetric sophisticated player
equilibrium (“immediate teaching” equilibrium) if and only if conditions I1 and I2 are
satisfied:

S −H/L
N − 1

≤ γThI−1, (I1)

t̂1(0, 0) ≤ T (1− L/H), (I2)

Proof: see Appendix B.4.
Conditions I1 and I2 are needed to prevent incentives to deviate from the “immediate

teaching” equilibrium. I1 ensures that the derivative at y = ȳ = 0 is negative, therefore
delayed teaching would decrease the payoff. Condition I2 ensures that players have no
incentives to never teach. Compared to immediate teaching, no teaching increases the
payoff flow from 0 to L in the period between 0 and t̂1(0, 0), but decreases it from H to L
in the period between t̂1(0, 0) and T . Condition I2 ensures that the costs of not teaching
exceed the benefits.

3.7.2. “Delayed Teaching” Equilibrium

In the “delayed teaching” equilibrium all sophisticated players switch to A at time
y∗ ∈ (0, T ).

Proposition 5. A combination of strategies (y∗, y∗) with y∗ ∈ (0, T ) is a symmetric so-
phisticated player equilibrium (“delayed teaching” equilibrium) if and only if conditions D1,
D2, D3 and D4 are satisfied:
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t̂1(y∗, y∗) < T , (D1)

y∗ > 0, (D2)

t̂1(y∗, y∗)− y∗L/H ≤ t̂2(0), (D3)

t̂1(y∗, y∗)− y∗L/H ≤ T (1− L/H), (D4)

where equilibrium strategies are calculated by

y∗ =
log
(

S−H/L
I−1(N−1)

)
log(γ)

− Th

Proof: see Appendix B.4.
If conditions D1 to D4 are satisfied, no sophisticated player will find it profitable

to deviate from the “delayed teaching” equilibrium. In equilibrium, players cannot have
incentives to deviate to neighboring strategies, therefore the first derivative of the payoff
function at y∗ should be equal to zero. This condition is used to determine the value
of y∗. The “delayed teaching” equilibrium does not exist if the first derivative is non-
zero for all t ∈ (0, T ). Conditions D1 and D2 ensure that this does not happen, and
D1 additionally ensures that the switching period of myopic players occurs before the
end of the game. Condition D3 ensures that players have no incentives to start teaching
immediately. Immediate teaching accelerates the transition, increasing the payoff flow
from 0 to H for the period between t̂2(0) and t̂1(y∗, y∗), but strategic teaching needs to be
used for an additional duration y∗, with a total cost of y∗L. Condition D3 requires the
costs of the deviation to immediate teaching to exceed the benefits. Condition D4 ensures
that players have no incentives to never teach. By not teaching, a sophisticated player
benefits from a payoff flow of L instead of 0 in the period between y∗ and t̂1(y∗, y∗), but
the transition to the efficient state would never occur, reducing the payoff to L instead
of H in the period between t̂1(y∗, y∗) and T . Condition D4 ensures that the costs of the
deviation to no teaching exceed the benefits.

3.7.3. “No Teaching” Equilibrium

In the third type of a symmetric sophisticated player equilibrium all sophisticated
players choose B for the entire duration of the game, that is y∗ = ȳ∗ = T .

Proposition 6. A combination of strategies (T, T ) is a symmetric sophisticated player
equilibrium (“no teaching” equilibrium) if and only if condition N1 is satisfied:

t̂2(0) ≥ T (1− L/H) (N1)

Proof: see Appendix B.4.
The proof of Proposition 6 shows that the most profitable deviation from the “no

teaching” equilibrium is to start teaching immediately. Condition N1 ensures that the
costs of such deviation exceed the benefits. Immediate teaching increases the payoff flow
by from L to H for the period between t̂2(0) and T , but decreases it from L to 0 in the
period between 0 and t̂2(0).
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3.8. Overview of a Numerical Example

To keep the results general, we have placed as few restrictions on the parameter values
as possible, but the intuition of the proofs and the importance of the results can be better
understood by going through a specific example. A detailed example that illustrates find-
ings from Propositions 1, 3, 4, 5, 6 and Corollaries 1, 2 is described in Appendix A. In
the example, we chose the simplest setup that can illustrate how the existence of multiple
equilibrium types depends on parameter values. We chose the smallest player composition
that satisfies Assumption 2 (with 2 sophisticated, 3 myopic players and θ = 3), a payoff
structure that satisfies Assumption 1 (H = 1, M = L = 0.05) and a reasonable parameter
value for weighted fictitious play (γ = 0.2).20 This subsection provides an overview of the
example, illustrating how the theoretical results are linked to develop predictions about
the behavioral patterns in a specific game.

First, the example graphically illustrates how the beliefs of myopic players respond
to the strategies of two sophisticated players. At the time when beliefs reach a thresh-
old value, myopic players switch to action A (from Proposition 1). Using Proposition 3,
we calculate and graphically illustrate how the switching period responds to the strategy
of a single sophisticated player (holding the strategy of the other player constant). The
switching period determines the speed of transition to the efficient state, and therefore the
sophisticated player’s payoffs, calculated using Corollary 1. In the example, the relation-
ship between the payoff and the strategy of a sophisticated player illustrates the trade-off
that players face: delayed teaching delays the transition, but shortens the duration of
costly teaching. Using iso-profit lines and a profit graph, we show how the sophisticated
player would find the best response to the other player’s strategy. This allows us to verify
which of the three equilibrium types exist. In our example, only the “immediate teach-
ing” equilibrium exists, because neither player has any incentives to delay teaching if the
other player does not delay. Figure A.4 plots the types of equilibria that exist for a set of
parameter combinations, utilizing the conditions derived in Propositions 4, 5 and 6. Find-
ings from these propositions allow the existence to be evaluated directly, without the need
to calculate beliefs, switching period and payoffs. A visual representation in Figure A.4
simplifies the interpretation of the effect that parameter values have on the existence of
equilibria: for example, as the planning horizon of the sophisticated players goes up, the
system shifts from a unique “no teaching” equilibrium to multiple equilibria to a unique
“immediate teaching” equilibrium. Corollary 2 shows that this result holds more generally,
and Corollaries 3 and 4 show similar results for the number of sophisticated players and
the history of inefficient coordination.

3.9. Summary and Comparative Statics

Table 2 summarizes the findings from Propositions 4, 5 and 6, listing the conditions
that need to be satisfied for each type of equilibrium to exist and the speed of transition

20When weighted fictitious play is estimated using experimental data, the median estimated values of γ
range from 0.1 to 0.5, depending on the game type and model specification (Cheung and Friedman, 1997)
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Table 2: Summary of the types of symmetric sophisticated player equilibria that may exist, speed of transition to the efficient state and the
conditions that need to be satisfied for each type of equilibrium to exist.

Immediate Teaching Delayed Teaching No Teaching

Equilibrium strategy y∗ = 0 y∗ =
log

(
S−H/L

I−1(N−1)

)
log(γ)

− Th y∗ = T

Speed of transition t̂(y∗, y∗) = t̂1(0, 0) t̂(y∗, y∗) = t̂1(y∗, y∗) t̂(y∗, y∗) > T

Equilibrium payoffs Π(0, 0) = (T − t̂1(0, 0))H Π(y∗, y∗) = y∗L+ (T − t̂1(y∗, y∗))H Π(T, T ) = TL

Existence conditions

No deviation to neigh-
bouring strategies

I1: S−H/L
N−1

≤ γThI−1 D2: y∗ > 0 –

No deviation to y = 0 – D3: t̂1(y∗, y∗)− y∗L/H ≤ t̂2(0) N1: T (1− L/H) ≤ t̂2(0)

No deviation to y = T I2: t̂1(0, 0) ≤ T (1− L/H) D1: t̂1(y∗, y∗) < T
D4: t̂1(y∗, y∗)−y∗L/H ≤ T (1−L/H)

–
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if the equilibrium exists. Note that the uniqueness and the existence of equilibria cannot
be guaranteed without additional restrictions on the parameter values. Multiplicity of
equilibria is a result of strategic complementarity between the strategies of sophisticated
players. Equilibria may fail to exist because we characterize only the symmetric equilibria
in pure strategies. Characterization of asymmetric and mixed strategy equilibria would
require a different approach than the one used here, and the existence problem would be
solved at the expense of increased multiplicity.

From the policy perspective, it is important to know how a change in a parameter
value affects the types of equilibria that exist and the speed of transition to the efficient
state. In practice, some parameters cannot be measured and known in advance, resulting
in uncertainty about the existence of equilibria. Uncertainty depends on the range of
parameter values that could satisfy the existence conditions: an equilibrium is “more
likely” to exist if a wide range of parameter values could satisfy all conditions, and “less
likely” if these conditions are met only with very specific values. To measure how each
parameter affects the existence of equilibria, we look at each parameter separately and
identify whether a change in its value would increase or decrease the set of other parameter
values with which existence conditions are satisfied. We say that an existence condition
from Table 2 is satisfied for a smaller set of other parameter values under parameter value
p than value p′ if the set of other parameter values with which the condition is satisfied
when the value is p is a strict subset of the other parameter values with which the condition
is satisfied when the value is p′. If a parameter affects all existence conditions of a certain
equilibrium type in the same direction, we can identify the overall effect on the existence
of this equilibrium type.

In terms of parameters, we consider the length of the planning horizon of sophisticated
players (T ), the number of sophisticated players (S) and the strength of initial lock-in (Th).
In terms of outcomes, we evaluate which types of equilibria will exist and how long the
transition takes if an equilibrium exists.

3.9.1. Planning Horizon of the Sophisticated Players

The first parameter of interest is T , the length of the planning horizon for sophisticated
players.

Corollary 2. If sophisticated players have a longer planning horizon, then:

1. The speed of transition in any equilibrium is not affected.

2. “Immediate teaching” equilibrium exists for a larger set of other parameter values.

3. “Delayed teaching” equilibrium exists for a larger set of other parameter values.

4. “No teaching” equilibrium exists for a smaller set of other parameter values.

Proof: see Appendix B.6.
The first part of the proof holds because the speed of transition in the “immediate

teaching” and “delayed teaching” equilibria does not depend on the planning horizon of
the sophisticated players. It does, however, affect the existence conditions because strate-
gic teaching becomes more attractive when a longer planning horizon increases the length
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of time over which the benefits of teaching are received. Consequently, a longer planning
horizon makes immediate teaching and delayed teaching more attractive compared to not
teaching at all (hence conditions I2 and D4 are easier to satisfy). The no-teaching equi-
librium, on the other hand, exists for a smaller set of parameter values, because players
have more incentives to use strategic teaching (condition N1 is harder to satisfy).

3.9.2. Player Composition

Instead of measuring the degree of sophistication by the length of the planning horizon,
we can measure it by the fraction of the sophisticated players in the group. We therefore
investigate the effect of increasing the number of sophisticated players (S) and at the same
time decreasing the number of myopic players to keep the total number of players constant.

Corollary 3. If myopic players are replaced by sophisticated players, then:

1. Transition is faster in the “delayed teaching” and “immediate teaching” equilibria.

2. The effect on the existence of an “immediate teaching” equilibrium or “delayed teach-
ing” equilibrium is ambiguous:

(a) there are more incentives to deviate to neighboring choice plans
(b) there are less incentives to never choose A.

3. There is no change in the existence conditions of the “no teaching” equilibrium.

Proof: see Appendix B.6.
When myopic players are gradually replaced by sophisticated players, the transition in

“immediate teaching” and “delayed teaching” equilibria is faster, because myopic players
observe a larger share of other players playing action A. Faster transition increases payoffs
in these equilibria, making the option to never teach less attractive (conditions I2, D1 and
D4 would be easier to satisfy). On the other hand, a larger fraction of sophisticated players
makes the transition period less sensitive to the strategy of a single sophisticated player,
increasing incentives to slightly delay teaching. Such incentives may lead to a break-down
of “immediate teaching” and “delayed teaching” equilibria (conditions I1 and D2 would
be harder to satisfy). The fraction of sophisticated players does not affect the existence of
the “no teaching” equilibrium, which would fail to exist only if each sophisticated player
had incentives to teach immediately, even in the absence of teaching by other sophisticated
players.

3.9.3. Length of the History of Inefficient Coordination

The third factor that we look at is the strength of the initial lock-in to an inefficient
state, measured by the length of history of inefficient coordination, Th.

Corollary 4. If the history of inefficient coordination is longer, then:

1. Transition is slower in the “immediate teaching” equilibrium but faster in a “delayed
teaching” equilibrium.

2. “Immediate teaching” equilibrium exists for a smaller set of other parameter values
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3. The effect on the existence of a “delayed teaching” equilibrium is ambiguous

4. “No teaching” equilibrium exists for a larger set of other parameter values.

Proof: see Appendix B.6.
A longer history of inefficient coordination increases the strength of inefficient lock-

in, lowering the beliefs of myopic payers and delaying the transition in the “immediate
teaching” equilibrium. A similar reduction in beliefs occurs in the “delayed teaching”
equilibrium, but, in addition, the equilibrium strategies change too, since sophisticated
players need to start teaching earlier to offset a stronger lock-in. Overall, Lemma 12
shows that the effect on the equilibrium strategy exceeds the effect on beliefs, therefore a
longer history of inefficient coordination speeds up the transition in the “delayed teaching”
equilibrium, in contrast to the “immediate teaching” equilibrium.

Lower beliefs of myopic players increase the cost of strategic teaching, which now has to
be used longer to achieve the same result. Consequently, there are more incentives to never
teach (condition I2 is harder to satisfy) or to delay teaching (condition I1 is harder to sat-
isfy), reducing the set of parameter values for which the “immediate teaching” equilibrium
exists. The effect on the existence of the “delayed teaching” equilibrium is ambiguous. A
faster transition increases equilibrium payoffs, therefore players have less incentives to stop
teaching (conditions D1 and D4 are easier to satisfy) or to teach immediately (condition
D3 is easier to satisfy), but there are more incentives to slightly delay teaching because
teaching starts later in equilibrium (condition D2 is harder to satisfy). A longer history of
inefficient coordination increases the set of parameter values for which the “no teaching”
equilibrium exists, because lower beliefs make strategic teaching more expensive, therefore
a unilateral deviation to immediate teaching becomes less attractive.

4. Conclusion

To make predictions in a critical mass coordination game following lock-in we propose
a new solution concept based on a Nash equilibrium between sophisticated players who
anticipate the learning process of the myopic players. Myopic players make choices based
on observed history of play, while sophisticated players have correct beliefs about the
actions of all other players, plan ahead and choose actions that maximize the sum of payoff
flows. In equilibrium, players may deviate from an inefficient state, but none deviate from
the efficient one, therefore there is a unique point in time at which play transitions from
the inefficient to the efficient state. For sophisticated players, choice plans that prescribe
a switch from efficient to the inefficient action are dominated, therefore a switch to the
efficient action occurs at most once. We calculate how such choice plans of sophisticated
players affect the switching period of myopic players, and how the latter affects the payoffs
of sophisticated players. This mapping from sophisticated player choice plans to payoffs is
then used to determine the combinations of choice plans that are mutual best responses.

We show that three types of symmetric equilibria may exist in repeated critical mass
games. In the first two types we observe “strategic teaching”, that is sophisticated players
deviate from the inefficient state to induce the myopic players to deviate in the future,
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attaining efficient coordination. In the “immediate teaching” equilibrium, sophisticated
players deviate from the inefficient state at the start of the game, and in the “delayed
teaching” equilibrium sophisticated players initially stay in the inefficient state, but de-
viate later. In a “no teaching” equilibrium, sophisticated players never deviate from the
inefficient state, and neither do the myopic players. Inefficient lock-in is therefore overcome
in the first two types of equilibria, but not in the third.

For each equilibrium type, we specify the parameter combinations with which an equi-
librium of that type exists, as well as the speed of transition to the efficient state if it
does occur. We then show how the likelihood of existence and the speed of transition re-
spond to changes in parameter values. A longer planning horizon of sophisticated players
increases the likelihood of the “immediate teaching” and the “delayed teaching” equilibria,
and decreases the likelihood of the “no teaching” equilibrium. A longer history of inefficient
coordination reduces the likelihood and decreases the speed of transitions in the “immedi-
ate teaching” equilibrium. The effect of player composition is ambiguous: on one hand, a
larger number of sophisticated players leads to a faster transition and higher profits in the
“immediate teaching” and “delayed teaching” equilibria, reducing incentives to completely
stop teaching. On the other hand, it reduces the impact that each sophisticated player
has on the speed of transition, increasing incentives to delay teaching and leading to a
potential breakdown of strategic teaching.

The problem that motivated this paper was the lack of a suitable theoretical model
that could be used to make predictions in a game with a history of lock-in. A small change
in the assumptions – instead of assuming all players to be farsighted we assume that some
players are learning from history – leads to a large difference in theoretical predictions,
with the existence of at most three types of equilibria in the repeated game. The methods
demonstrated in this study pave the way for the development of a successful positive model
of human behavior, which should combine adaptive learning with strategic behavior.

An important subsequent question is whether the predictions of the sophisticated player
equilibrium are supported by empirical data. Masiliūnas (2017) ran an experiment with the
setup used in this study (a critical mass game following lock-in to an inefficient state) and
found support for some of the predictions: farsighted players deviate from the inefficient
state more often than the less farsighted ones, and transitions occur from the inefficient
to the efficient state, but not the other way around. However, on an individual level,
some players start using strategic teaching, but later stop it if other group members fail to
follow. Such behavior is not possible in our theoretical model, because strategic players are
assumed to be perfectly aware of the composition and future behavior of all other players.
The explanatory power of the sophisticated player equilibrium might therefore be increased
by relaxing the perfect information assumption and instead assuming that beliefs about
the composition of types and their learning rate are updated based on observed feedback.
Data in Masiliūnas (2017) shows evidence for the “no teaching” equilibrium (groups that
never overcome lock-in) and for the “immediate teaching” equilibrium (groups in which
strategic teaching starts right away, and lock-in is soon overcome), but equilibria in which
teaching is delayed are not observed. One reason for the failure to observe such equilibria is
that they require coordination between the sophisticated players, which is difficult without
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a coordination device and without a possibility to learn across supergames.
Findings from this paper help to understand some of the previous experimental results;

for example, it has been found that a longer planning horizon increases the rates of efficient
coordination, either when the planning horizon is a personal characteristic, as in Masiliūnas
(2017), or when it is an experimental parameter, as in Berninghaus and Ehrhart (1998).
Other results obtained here have not been tested, and while some findings are intuitive,
others are unexpected and would be interesting to investigate in the future. For example,
we show that a higher number of sophisticated players might introduce incentives to free-
ride, and if confirmed, this finding would suggest that it might be beneficial to limit the
number of farsighted players when a few of them are sufficient to overcome lock-in.
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Online Appendix for “Overcoming Inefficient Lock-in in Coordination Games
with Sophisticated and Myopic Players”

Appendix A. Numerical Example

We assume 2 sophisticated and 3 myopic players (n = 5 and s = 2), the smallest
group composition that satisfies Assumption 2. We assume that θ = 3, the smallest
value that satisfies Assumption 2 for the chosen group composition. Without the loss of
generality, we normalize the payoff in the efficient state to H = 1. We also assume that
M = L = 0.05, γ = 0.2, Th = 5 and T = 10. We illustrate the beliefs and switching period
of myopic players and the payoffs of a sophisticated player who chooses strategy y if the
other sophisticated player chooses ȳ.
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(a) y = 0, ȳ = 0
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(b) y = 5, ȳ = 5
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(c) y = 0, ȳ = 5

Figure A.1: Myopic player beliefs, assuming n = 5, s = 2, θ = 3, H = 1, M = L = 0.05, γ = 0.2, Th = 5.

Proposition 1 indicates that in a game with the chosen parameter values myopic players
will choose A if their beliefs exceed the threshold value I−1

0.05(θ,N − θ) = 0.249. Since the
threshold value is below 1/(N−1) = 0.25, a transition to the efficient state may be possible
because of strategic teaching by a single sophisticated player (over time, beliefs approach
0.25 if one out of four other group members always plays A). Panel (a) of Figure A.1
illustrates the evolution of beliefs, calculated using equation (1), if y = ȳ = 0. Beliefs
reach the threshold value at time t̂1(0, 0) = 0.43, and all players choose A from this point
onward, therefore beliefs start to go up at a faster pace. Similarly, panel (b) shows that
myopic players switch to A at time t̂1(5, 5) = 5.43 if sophisticated players delay the start
of strategic teaching to time y = ȳ = 5. If sophisticated players use different strategies,
a transition to the efficient state can occur before the second player starts teaching. This
case is illustrated in panel (c), assuming y = 0 and ȳ = 5. Myopic player beliefs grow
slowly at first, when only one sophisticated player is teaching, faster starting from time
t̂2(0) = 3.22, when all myopic players switch to A, and even faster after time ȳ = 5, when
the second sophisticated player switches to A. However, the strategy profile illustrated in
panel (c) could not be supported in equilibrium because the second sophisticated player
could increase earnings by switching to A earlier. In a symmetric equilibrium, both players
must start teaching at the start of the game (as in panel (a)), in the middle of the game
(panel (b)) or never, a case in which myopic player beliefs remain 0 throughout the game.
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Figure A.2: Switching time and payoffs of a sophisticated player if the other sophisticated player chooses
ȳ = 5, assuming n = 5, s = 2, θ = 3, H = 1, M = L = 0.05, γ = 0.2, Th = 5, T = 10.

Panel (a) in Figure A.2 plots the switching time of myopic players (from Proposition
3) for all y, assuming that the other sophisticated player chooses ȳ = 5. If y = 0, myopic
players switch at t̂2(0) = 3.22, a case that was illustrated in panel (c) of Figure A.1.
The longer the delay, the later is the switching period, and the relationship between y
and t̂2(y) is initially nearly linear. The slope decreases when t̂2(y) reaches ȳ = 5, at the
point y = 1.77. If y exceeds this value, myopic players switch after both sophisticated
players, and the switching period is calculated by t̂1(y, ȳ). Since beliefs jump up when
both sophisticated players are observed teaching, myopic players would switch to A soon
after ȳ, and a higher y does little to delay the transition. The slope increases when y
approaches ȳ = 5 (the case when y = ȳ = 5 was illustrated in panel (b) of Figure A.1).
The slope increases because when y exceeds ȳ, the transition period occurs soon after y,
when both sophisticated players start teaching. If y is sufficiently large, myopic players
switch prior to y, after observing strategic teaching by the other sophisticated player since
time ȳ = 5. The switch occurs at t̂3(5) = 8.22. Any increase of y beyond t̂3(5) does not
affect the switching period of myopic players.

Information about the switching period allows sophisticated players to calculate the
payoffs from the entire game, as specified in Corollary 1. In panel (a) of Figure A.2,
payoffs are illustrated using iso-profit lines, which consist of two parts. The lines are
vertical if t̂(y, ȳ) < y, because payoffs depend only on y and a shorter delay increases the
payoff flow from M to H. Payoffs are not affected by t̂ because we assume that L = M .
The lines have a positive slope if t̂(y, ȳ) ≥ y, because the payoff flow is decreasing both
in t̂ (from H to 0) and in y (from L to 0). The slope of the iso-profit line is therefore
determined by the L/H ratio. In the example shown in panel (a), the highest (i.e. closest
to the origin) iso-profit line is reached by setting y = 0, therefore the “delayed teaching”
equilibrium with y = ȳ = 5 does not exist.

The payoff-maximizing action is easier identified by plotting the payoff function Π(y, ȳ)
from Corollary 1 (panel (b) of Figure A.2). If y = 0, the payoff flow is 0 until myopic
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players switch to A at time t̂2(0) = 3.22, and then 1 from t̂2(0) until the end of the game,
therefore Π(0, 5) = 6.78. A higher y increases the transition period in a nearly linear way,
decreasing the payoff that is calculated by Π2(y, ȳ). Lemma 3 shows that this pattern
would hold in all games in which a transition is possible by strategic teaching of a single
sophisticated player. If y > 1.77, the payoff starts being calculated by Π1(y, ȳ) and is
increasing in y, because t̂ is initially insensitive to y. Once the sensitivity goes up, the
payoffs start to decrease. The decrease continues at the same rate even when y passes
t̂3(ȳ) = 8.22 and the payoffs start being calculated by Π3(y, ȳ). Any further increase in
y delays the time at which the sophisticated player starts to earn H and thus decreases
payoffs.
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Figure A.3: Sophisticated player payoffs, assuming n = 5, s = 2, θ = 3, H = 1, M = L = 0.05, γ = 0.2,
Th = 5, T = 10.

Figure A.2 indicates that there is no “delayed teaching” equilibrium with y = ȳ = 5
because the best reply to the opponent choosing ȳ = 5 is y = 0. To check whether the
“immediate teaching” equilibrium exists, we plot the payoffs for ȳ = 0 in panel (a) of Figure
A.3. Payoffs are decreasing in y because higher y delays the transition, which occurs soon
after both players start to teach (if y < t̂3(ȳ) = 3.22), or because it shortens the duration
of time in which player receives H (if y ≥ t̂3(ȳ)). The optimal response to ȳ = 0 is y = 0,
therefore an “immediate teaching” equilibrium exists.

Next, we evaluate whether the “no teaching” equilibrium exists. Panel (b) of Figure A.3
plots the payoff when ȳ = 10. Payoffs from a small y are determined by Π2(y), and are
therefore identical to the payoffs in panel (b) of Figure A.2. A higher y delays the transition
and decreases payoffs, up to the point when t̂2(y) = 10, which occurs when y = 6.77.
This strategy minimizes payoffs, because the player pays the cost of strategic teaching,
but receives no benefit from it since the transition occurs at the end of player’s planning
horizon. Increasing y beyond 6.77 increases payoffs, shortening the duration of wasteful
strategic teaching. In this example, the best-response to ȳ = 10 is y = 0, therefore the “no
teaching” equilibrium does not exist.

The existence conditions derived in Propositions 4, 5 and 6 allow existence to be eval-
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ITE exists

NTE exists

Figure A.4: Combinations of γ and T for which the “immediate teaching” and “no teaching” equilibria
exist, assuming n = 5, s = 2, θ = 3, H = 1, M = L = 0.05, Th = 5.

uated directly, without the calculation of payoffs. Figure A.4 shows the combination of
two variables, γ and T , for which the “immediate teaching” and “no teaching” equilibria
exist. These two parameters are interesting to study because precise values of personal
characteristics would be difficult to know in practice. With the chosen parameter values,
the “delayed teaching” equilibrium does not exist.21 Figure A.4 shows that with the pa-
rameter values assumed in this example (γ = 0.2, T = 10), only the “immediate teaching”
equilibrium exists. The “no teaching” equilibrium may start to exist if γ went up, increas-
ing the weight placed on the history of inefficient coordination and delaying transition, or
if T went down, decreasing the benefits of strategic teaching. There is a range of param-
eters for which two types of equilibria co-exist, and a range in which the “no teaching”
equilibrium is unique. A higher T increases the set of other parameter values for which
the “immediate teaching” equilibrium exists, and decreases the set for the “no teaching”
equilibrium; Corollary 2 shows that this result holds more generally, and Corollaries 3 and
4 show similar results for the number of sophisticated players and the history of inefficient
coordination.

Appendix B. Proofs

Appendix B.1. Proposition 1

Proposition 1. Suppose that in a game with payoffs defined by (5) at time t myopic
player m holds beliefs xm(t). Then the response function defined in (3) is equivalent to:

21“Delayed teaching” equilibrium does not exist because S −H/L < 0, therefore the derivative of the
profit function with respect to y at any potential equilibrium would be negative (see the calculations in
the proof of Lemma 7).
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rm(t, cS) =

{
A if xm(t) ≥ I−1

L
L+H−M

(θ,N − θ)
B otherwise

where I−1 is the inverse of an incomplete regularized beta function.
Proof.
From (3), action A is chosen if the subjective expected payoff of A at time t exceeds

the subjective expected payoff of B:

rm(t, cS) = A⇔ SEP (A, xm(t)) ≥ SEP (B, xm(t)) (B.1)

In critical mass games, player’s payoff depends on the chosen action and on whether
the number of other group members who choose A exceeds θ. Denote the subjective
probability assigned to the latter event by Pr[α(r−m(t, cS)) ≥ θ|xm(t)]. Then subjective
expected payoffs from equation (2) can be defined as:

SEP (A, xm(t)) = 0× (1− Pr[α(r−m(t, cS)) ≥ θ|xm(t)]) +H × Pr[α(r−m(t, cS)) ≥ θ|xm(t)]

SEP (B, xm(t)) = L× (1− Pr[α(r−m(t, cS)) ≥ θ|xm(t)]) +M × Pr[α(r−m(t, cS)) ≥ θ|xm(t)]
(B.2)

The subjective probability that the threshold will be exceeded is calculated by adding
the probabilities assigned to all action profiles of other players in which more than θ players
choose A:

Pr[α(r−m(t, cS)) ≥ θ|xm(t)] =
N−1∑
k=θ

(xm(t))k(1− xm(t))N−1−k
(
N − 1

k

)
(B.3)

Use equations (B.2) and (B.3) to rewrite (B.1) the following way:

rm(t, cS) = A⇔
N−1∑
k=θ

(xm(t))k(1− xm(t))N−1−k
(
N − 1

k

)
≥ L

L+H −M
(B.4)

Notation in (B.4) is simplified using the definition of an incomplete regularized beta
function:22

rm(t, cS) = A⇔ Ixm(t)(θ,N − θ) ≥
L

L+H −M
(B.5)

Taking the inverse of (B.5) and substituting into (3) completes the proof:

rm(t, cS) =

{
A if xm(t) ≥ I−1

L
L+H−M

(θ,N − θ)
B otherwise

22An incomplete regularized beta function is defined as Ic(a, b) =
∑a+b−1

k=a ck(1−c)a+b−1−k(a+b−1
k

)
. The

function is well defined because L
L+H−M ∈ (0, 1), from Assumption 1.
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Appendix B.2. Proposition 2

Proposition 2. Choice plan profiles for sophisticated players that prescribe a switch
from A to B for at least one sophisticated player are dominated:

ABS ∩ Us = ∅

Proof.
Take a choice plan profile cS ∈ ABS. We will show that in this profile at least one

sophisticated player must be choosing a dominated choice plan.
If cS ∈ ABM , at least one sophisticated player must be choosing a dominated choice

plan, from Lemma 2, and the proof would be completed. Alternatively, assume that
cS ∈ {ABS \ABM}. By the definition of ABS, there must be a sophisticated player whose
choice plan prescribes a switch from A to B; denote the choice plan of this player by c̃s
and denote the switching time prescribed by c̃s by t′. Then there must be some small ε
such that c̃s(t) = A if t ∈ [t′ − ε, t′) and c̃s(t) = B if t ∈ [t′, t′ + ε]. Since cS 6∈ ABM ,
myopic players switch from B to A at most once, thus their choices can be described by a
number t̂(c̃s) that identifies this switching time: B is chosen in the interval [0, t̂(c̃s)) and A
is chosen in the interval [t̂(c̃s), T ].

First, suppose that t′ ≥ t̂(c̃s), then myopic players would be choosing A at any time
t ≥ t′. Assumption 2 implies that the threshold will be exceeded at any such point in time,
therefore a choice plan c̃s is dominated by a choice plan that prescribes A at each point
in time t ≥ t̂(c̃s). Next, suppose that t′ < t̂(c̃s) and t̂(c̃s) > T . Then myopic players will
choose B for the entire period that is taken into account by the sophisticated player, thus
choice plan c̃s will be dominated by a choice plan that prescribes B for the entire interval.

Alternatively, suppose that t̂(c̃s) > t′ and t̂(c̃s) ≤ T (see Figure B.5). Choose ε to be
sufficiently small to satisfy t̂(c̃s) > t′ + ε. Then for any c̃s construct a choice plan c′s the
following way:

c′s(t) =


c̃s(t) if t ∈ [0, t′ − ε) ∪ (t′ + ε, T ]
B if t ∈ [t′ − ε, t′]
A if t ∈ (t′, t′ + ε]

In other words, c′s is constructed by taking c̃s and swapping choices prescribed in the
interval (t′ − ε, t′) with choices prescribed in the interval (t′, t′ + ε). We will show that c̃s
is dominated by c′s.

The comparison of payoff flows generated by these two choice plans is shown in Figure
B.5. In the interval [0, t + ε) the sum of payoff flows is the same for both choice plans
(π1 + π2 + π3). Payoffs are equal because with both choice plans myopic players choose
B in this entire interval (both t̂(c′s) and t̂(c̃s) exceed t′ + ε), therefore the participation
threshold is never exceeded. Choice plan c̃s prescribes A for the same duration of time as
c′s, therefore the sum of payoffs in the interval [0, t′+ ε) would be the same for both choice
plans.

In the interval [t′ + ε, T ] the sum of payoffs generated by c′s is strictly higher than that
of c̃s. Since c̃s(t) = c′s(t), ∀t ∈ (t′+ε, T ], any payoff difference between the two choice plans
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t
0 t′ − ε t′ t′ + ε t̂(c′s) t̂(c̃s) T

π(c̃s) = π1 π2 π3 π4 π5 π6

π(c′s) = π1 π3 π2 ≥ π4 > π5 ≥ π6

Figure B.5: Payoff flows generated by choice plans c̃s and c′s for the case t̂(c̃s) > t′ and t̂(c̃s) ≤ T .

in this interval must be due to the choices of myopic players. From equation (1), xm(t)
would be the same under c̃s(t) as under cs(t)

′ if γ was equal to 1. But since γ ∈ (0, 1),
older observations receive less weight and therefore myopic player beliefs would be strictly
higher following c′s than following c̃s at any time t ∈ (t′+ε, T ]. Then Lemma 1 implies that
the payoff flow is always weakly higher for c′s at any time in the interval [t′ + ε, T ]. To get
strict dominance, note that t̂(c′s) < t̂(c̃s), for the following reasons. Since t̂(c′s) ∈ (t′+ ε, T ]
and xm(t) is continuous, the switching period t̂(c′s) must satisfy x′m(t̂(c′s)) = I−1. But
since x̃m(t) < x′m(t), ∀t ∈ (t′ + ε, T ], it must also hold that x̃m(t̂(c′s)) < x′m(t̂(c′s)) = I−1.
Consequently, the intersection of beliefs x̃m(t) and belief threshold I−1 must occur strictly
later, so that t̂(c′s) < t̂(c̃s). In the interval (t̂(c′s), t̂(c̃s)) choice plan c̃s provides a flow of
payoffs of at most L, while c′s provides a payoff of H because more than θ players are
choosing A.

The comparison of payoff flows associated with choice plans c̃s and c′s is shown in Figure
B.5. The sum of payoff flows generated by c′s will be strictly higher than the sum of payoff
flows generated by c̃s, therefore choice plan c̃s that prescribes switching from A to B is
strictly dominated by another choice plan c′s.

Appendix B.3. Proposition 3

Proposition 3. If one sophisticated player uses strategy ys = y and the other (S − 1)
players use strategies y−s = {(ȳ)×(S−1)}, the switching period of myopic players is:

t̂(y, ȳ) =


t̂1(y, ȳ) if max{y, ȳ} < t̂1(y, ȳ) and S

N−1
> I−1

t̂2(y) if y < t̂2(y) ≤ ȳ and 1
N−1

> I−1

t̂3(ȳ) if ȳ < t̂3(ȳ) ≤ y and S−1
N−1

> I−1

∞ otherwise

such that

t̂1(y, ȳ) =
log( S

N−1
− I−1)− log(γ−ȳ S−1

N−1
+ γ−y 1

N−1
− γThI−1)

log(γ)

t̂2(y) =
log( 1

N−1
− I−1)− log(γ−y 1

N−1
− γThI−1)

log(γ)

t̂3(ȳ) =
log( S−1

N−1
− I−1)− log(γ−ȳ S−1

N−1
− γThI−1)

log(γ)
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Proof.
There are three cases to consider. In the first case, t̂(y, ȳ) > max{y, ȳ}, so that myopic

players observe no other players choosing A from time 0 to time min{y, ȳ}, a fraction of
S

N−1
others choosing A from time max{y, ȳ} to t̂(y, ȳ) and either a fraction of 1

N−1
others

choosing A from time ȳ to time y (if y > ȳ) or a fraction of S−1
N−1

others choosing A from
time y to ȳ (if ȳ > y). Feedback observed by myopic players in this case is illustrated in
Figure B.6.

In the second case, y < t̂(y, ȳ) < ȳ. This will be true only if 1
N−1

> I−1, that is if
myopic players would switch to A after observing only one player choosing A. In this case
each myopic player will observe no others choosing A from time 0 to y and a fraction of

1
N−1

others choosing A from time y to t̂(y, ȳ). See Figure B.7 for a graphical representation.

In the third case, ȳ < t̂(y, ȳ) < y. Then each myopic player will observe no others
choosing A from time 0 to ȳ and a fraction of S−1

N−1
others choosing A from time ȳ to t̂(y, ȳ).

See Figure B.8 for a graphical representation.
It is never possible that t̂(y, ȳ) < min{y, ȳ} because at time t ∈ [0,min{y, ȳ}) myopic

players observe no others choosing A and therefore always choose B.
Case 1: t̂(y, ȳ) > max{y, ȳ}

t
−Th 0 y ȳ t̂(y, ȳ) T

B

B A

B A

B A

(N − S − 1) myopic players

1 sophisticated player

(S − 1) sophisticated players

Figure B.6: Illustration of the feedback observed by a single myopic player in the first case, where t̂(y, ȳ) >
max{y, ȳ}. In this example ȳ > y. Vertical axis shows the fraction of other players choosing A or B,
horizontal axis shows the passage of time. The first sophisticated player switches from B to A at time y,
other (S − 1) sophisticated players switch at time ȳ and myopic players switch at time t̂(y, ȳ)

Recall that beliefs of myopic players are calculated using weighted fictitious play from
equation (1). If sophisticated players are using strategies y and ȳ, myopic player beliefs at
any time t ∈ (max{y, ȳ}, t̂(y, ȳ)] will be calculated using the following rule:

xi(t) =

∫ t−ȳ
k=0

γk( S−1
N−1

)dk +
∫ t−y
k=0

γk( 1
N−1

)dk∫ t+Th
k=0

γk dk
=

=
(γt−ȳ − 1)( S−1

N−1
) + (γt−y − 1)( 1

N−1
)

γt+Th − 1
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The terms in the numerator correspond to the history observed by a myopic player up
to time t ∈ (max{y, ȳ}, t̂(y, ȳ)]: (S−1) sophisticated players are observed choosing A for a
span of t− ȳ and one sophisticated player is observed choosing A for a span of t− y. This
feedback is illustrated in Figure B.6. The denominator measures the length of the entire
history, including the Th rounds of inefficient coordination.

From Proposition 1, myopic players will choose A at time t if xm(t) ≥ I−1:

xm(t) ≥ I−1 ⇔
(γt−ȳ − 1)( S−1

N−1
) + (γt−y − 1)( 1

N−1
)

γt+Th − 1
≥ I−1 ⇔

γt+Th
(
γ−ȳ−Th

S − 1

N − 1
+ γ−y−Th

1

N − 1
− I−1

)
≤ S

N − 1
− I−1 (B.6)

If S
N−1
− I−1 ≤ 0, equation (B.6) is never satisfied because of the following relationship

that contradicts (B.6):

γt+Th(γ−ȳ−Th S−1
N−1

+ γ−y−Th 1
N−1
− I−1) > γt+Th( S

N−1
− I−1) ≥ S

N−1
− I−1

(B.7)
The first inequality holds because γ−ȳ−Th > 1 and γ−y−Th > 1 and the second inequality

holds because γt+Th < 1 and S
N−1
− I−1 ≤ 0. But (B.7) contradicts (B.6), therefore if

S
N−1
− I−1 ≤ 0, equation (B.6) is never satisfied and myopic players would choose B at any

time t.
Alternatively, if S

N−1
− I−1 > 0, condition (B.6) can be expressed the following way:

γ−t ≥
γ−ȳ S−1

N−1
+ γ−y 1

N−1
− γThI−1

S
N−1
− I−1

(B.8)

The left-hand side of (B.8) is strictly increasing in t and unbounded for any γ ∈ (0, 1),
so (B.8) will be satisfied for some t, although not necessarily with t ≤ T . Equation (B.8)
is not satisfied for t = 0 because the RHS of (B.8) is always strictly larger than 1 (RHS
is increasing in both y and ȳ, but RHS > 1 even if y = ȳ = 0 because S

N−1
− γThI−1 >

S
N−1
− I−1) and γ−t < 1. Consequently, (B.8) must be satisfied with equality at a unique

value of t, which we denote by t̂1(y, ȳ), with t̂1(y, ȳ) ∈ (0,∞). This value is the first
moment in time at which myopic players are indifferent between choosing A and B, thus
it is the switching period of myopic players. To get an expression for t̂1(y, ȳ), we require
(B.8) to be satisfied with equality and rearrange the following way:

t̂1(y, ȳ) =
log( S

N−1
− I−1)− log(γ−ȳ S−1

N−1
+ γ−y 1

N−1
− γThI−1)

log(γ)
(B.9)

Of course, t̂(y, ȳ) can be calculated using (B.9) only if S
N−1
−I−1 > 0, otherwise myopic

players would always play B. The precise characterization of the switching period if case 1
is applicable is as follows:

t̂(y, ȳ) =

{
t̂1(y, ȳ) if S

N−1
− I−1 > 0

∞ otherwise
(B.10)
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Note that it is not required that t̂1(y, ȳ) ≤ T , therefore it is possible that the planning
horizon of a sophisticated player is too short to take re-coordination into account.

Case 2: y < t̂ < ȳ

t
−Th 0 y ȳt̂(y, ȳ) T

B

B A

B A

B A

(N − S − 1) myopic players

1 sophisticated player

(S − 1) sophisticated players

Figure B.7: Illustration of the second case, where y < t̂(y, ȳ) ≤ ȳ. The height of the figure shows
the fraction of players choosing action A or action B, the width shows the passage of time. The first
sophisticated player switches from B to A in period y, other (S-1) sophisticated players switch in period ȳ
and the myopic players switch in period t̂.

The second possibility is that t̂(y, ȳ) ≤ ȳ, that is myopic players switch to A earlier
than (S− 1) sophisticated players. In this case the actual value of ȳ will have no influence
on the switching period of myopic players, as they will never observe any of the (S − 1)
sophisticated players choosing A. Therefore the switching period will be a function only of
the strategy chosen by a single sophisticated player. At time t ∈ (y, t̂] beliefs of a myopic
player m are xm(t):

xm(t) =

∫ t−y
k=0

γk( 1
N−1

) dk∫ t+Th
k=0

γk dk
=

(γt−y − 1)( 1
N−1

)

γt+Th − 1

Player m will choose A in t if:

xm(t) ≥ I−1 ⇔

γt+Th
(
γ−y−Th

1

N − 1
− I−1

)
≤ 1

N − 1
− I−1 (B.11)

If 1
N−1
− I−1 ≤ 0, equation (B.11) is never satisfied. To see this, notice the following

relationship that contradicts (B.11):

γt+Th
(
γ−y−Th

1

N − 1
− I−1

)
> γt+Th

(
1

N − 1
− I−1

)
≥ 1

N − 1
− I−1

The latter equation holds because γ−y−Th > 1, γt+Th < 1 and 1
N−1
− I−1 ≤ 0.

Alternatively, if 1
N−1
− I−1 > 0, (B.11) will be satisfied with equality at time t̂2(y) ∈

(0,∞) that satisfies:

γ−t̂2(y) =
γ−y 1

N−1
− γThI−1

1
N−1
− I−1

⇔
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t̂2(y) =
log( 1

N−1
− I−1)− log(γ−y 1

N−1
− γThI−1)

log(γ)
(B.12)

t̂(y, ȳ) can be calculated using (B.12) only if 1
N−1
− I−1 > 0, otherwise myopic players

would never switch from A to B. The switching period if case 2 applies can be expressed
as follows:

t̂(y, ȳ) =

{
t̂2(y) if 1

N−1
− I−1 > 0

∞ otherwise
(B.13)

Case 3: ȳ < t̂ < y

t
−Th 0 yȳ t̂(y, ȳ) T

B

B A

B A

B A

(N − S − 1) myopic players

1 sophisticated player

(S − 1) sophisticated players

Figure B.8: Illustration of the third case, where ȳ < t̂(y, ȳ) ≤ y. Height of the figure shows a fraction of
players choosing action A or action B, the width shows the passage of time. The first sophisticated player
switches from B to A in period y, other (S−1) sophisticated players switch in period ȳ and myopic players
switch at time t̂(y, ȳ).

The third possibility is that ȳ < t̂(y, ȳ) ≤ y, that is at first (S−1) sophisticated players
switch to A, then N−S myopic players switch and the last sophisticated player may switch
some time after the myopic ones. In this case the switching time is a function only of ȳ.
At time t ∈ (ȳ, t̂(y, ȳ)] beliefs of a myopic player m are xm(t):

xm(t) =

∫ t−ȳ
k=0

γk( S−1
N−1

) dk∫ t+Th
k=0

γk dk
=

(γt−ȳ − 1)( S−1
N−1

)

γt+Th − 1

Player m will choose A in t if:

xm(t) ≥ I−1 ⇔

γt+Th
(
γ−ȳ−Th

S − 1

N − 1
− I−1

)
≤ S − 1

N − 1
− I−1 (B.14)

If S−1
N−1
− I−1 ≤ 0, condition (B.14) is never satisfied. To see this, notice the following

relationship that contradicts (B.14):

γt+Th
(
γ−ȳ−Th

S − 1

N − 1
− I−1

)
> γt+Th

(
S − 1

N − 1
− I−1

)
≥ S − 1

N − 1
− I−1
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The latter conditions holds because γ−ȳ−Th > 1, γt+Th < 1 and S−1
N−1
− I−1 ≤ 0. Therefore

if S−1
N−1
− I−1 ≤ 0, equation (B.14) is never satisfied and myopic players would choose B at

any time t.
Alternatively, if S−1

N−1
− I−1 > 0, (B.14) will be satisfied with equality at time t̂3(y) ∈

(0,∞) that satisfies:

γ−t̂3(ȳ) =
γ−ȳ S−1

N−1
− γThI−1

S−1
N−1
− I−1

⇔ (B.15)

t̂3(ȳ) =
log( S−1

N−1
− I−1)− log(γ−ȳ S−1

N−1
− γThI−1)

log(γ)
(B.16)

t̂(y, ȳ) can be calculated using (B.16) only if S−1
N−1
− I−1 > 0. Therefore, the switching

period if case 3 applies can be expressed as follows:

t̂(y, ȳ) =

{
t̂3(ȳ) if S−1

N−1
− I−1 > 0

∞ otherwise
(B.17)

Appendix B.4. Propositions 4, 5 and 6

Proposition 4. A combination of strategies (0, 0) is a symmetric sophisticated player
equilibrium (“immediate teaching” equilibrium) if and only if conditions I1 and I2 are
satisfied:

S −H/L
N − 1

≤ γThI−1, (I1)

t̂1(0, 0) ≤ T (1− L/H), (I2)

Proof.

Π(0, 0) ≥ Π(y, 0),∀y ∈ [0, T ] Π4(0, y∗) ≥ Π(y, y∗),∀y ∈ [0, T ]

Π1(0, 0) ≥ Π(y, 0),∀y ∈ [0, T ]

{
Π1(0, 0) ≥ Π1(y, 0),∀y ∈ [0, y′)
Π1(0, 0) ≥ Π4(T, 0)

I1
I2

if t̂1(0,0)>T

if t̂1(0,0)≤T

Lemma 4

Lemma 5

Figure B.9: Structure of the proof for Proposition 4.

The structure of the proof is shown in Figure B.9. The “immediate teaching” equilib-
rium exists if (13) is satisfied for y∗ = 0:
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Π(0, 0) ≥ Π(y, 0), ∀y ∈ [0, T ]

If t̂1(0, 0) > T , condition (12d) is satisfied and equilibrium payoffs are determined by
Π(0, 0) = Π4(0, 0) = 0, while deviation payoffs are determined by Π(y, 0) = yL. Then an
“immediate teaching” equilibrium would not exist because there is a profitable deviation
to strategy y = T that provides a payoff of TL. If t̂1(0, 0) ≤ T , equilibrium payoffs are
calculated by Π1(0, 0). Condition t̂1(0, 0) ≤ T is therefore necessary for the existence of
the “immediate teaching” equilibrium. We do not list this condition separately because it
is implied by I2.

The calculation of payoffs obtained by deviating from the equilibrium depends on the
size of the deviation. Payoffs for y ∈ [0, t̂3(0)] are calculated by Π1(y, 0). Payoffs for
y ∈ (t̂3(0), t′] (where t′ solves t̂1(t′, 0) = T ) are dominated by y = t̂3(0) because increasing
y beyond t̂3(0) does not change the speed of transition but decreases the payoff flow from
H to M . If the deviation is larger, that is y ∈ [t′, T ], myopic players would never switch
to A and deviation profits would be calculated by Π4(y, 0) = yL. All strategies in this
interval would be dominated by strategy y = T that provides a payoff of TL. Overall,
two requirements need to be satisfied for an “immediate teaching” equilibrium to exist.
First, equilibrium payoffs should be higher than the payoffs from any other y ∈ [0, y′),
calculated by Π1(y, 0). Lemma 4 specifies the conditions under which this requirement is
satisfied. Second, equilibrium payoffs should be higher than the payoff of strategy y = T ;
we derive the conditions for this requirement in Lemma 5. The proofs of these lemmas are
in Appendix B.7.

If both I1 and I2 hold, equilibrium payoffs are calculated by Π1(0, 0) and there are no
incentives to deviate to neighbouring strategies or to y = T . If one of these conditions was
violated, there would be a profitable deviation and the “immediate teaching” equilibrium
would not exist.

Proposition 5. A combination of strategies (y∗, y∗) with y∗ ∈ (0, T ) is a symmetric
sophisticated player equilibrium (“delayed teaching” equilibrium) if and only if conditions
D1, D2, D3 and D4 are satisfied:

t̂1(y∗, y∗) < T , (D1)

y∗ > 0, (D2)

t̂1(y∗, y∗)− y∗L/H ≤ t̂2(0), (D3)

t̂1(y∗, y∗)− y∗L/H ≤ T (1− L/H), (D4)

where equilibrium strategies are calculated by

y∗ =
log
(

S−H/L
I−1(N−1)

)
log(γ)

− Th

Proof.
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The structure of the proof is shown in Figure B.10. Payoffs in a symmetric equilibrium
are equal either to Π1(y∗, y∗) or to Π4(y∗, y∗). If condition D1 holds, condition (12a)
will hold as well (Lemma 10), therefore Π(y∗, y∗) = Π1(y∗, y∗). If D1 does not hold,
Π(y∗, y∗) = Π4(y∗, y∗) = y∗L, and a “delayed teaching” equilibrium will not exist because
there is a profitable deviation to a strategy y = T that provides a payoff of TL. Condition
D1 is therefore the first necessary existence condition, and we show that it is also jointly
sufficient, together with conditions D2, D3 and D4. These proofs are shown in additional
lemmas. Lemma 6 shows that equilibrium payoffs exceed deviation payoffs if and only
if equilibrium payoffs exceed the payoffs of two endpoints, 0 and T , and the payoffs of
“neighboring” strategies, calculated by Π1(y, y∗). The proof of Lemma 6 uses a property
shown in Lemma 3. Lemmas 7, 8 and 9 show the conditions under which there are no
profitable deviations to neighboring strategies (Lemma 7), to y = 0 (Lemma 8) and to
y = T (Lemma 8). The details of the lemmas and their proofs are in Appendix B.7.

Π(y∗, y∗) ≥ Π(y, y∗),∀y ∈ [0, T ] Π4(y∗, y∗) ≥ Π(y, y∗),∀y ∈ [0, T ]

Π1(y∗, y∗) ≥ Π(y, y∗),∀y ∈ [0, T ]


Π1(y∗, y∗) ≥ Π1(y, y∗),∀y ∈ (y′′, y′)
Π1(y∗, y∗) ≥ Π2(0, y∗)
Π1(y∗, y∗) ≥ Π4(T, y∗)

D2
D3
D4

if not D1

if D1

Lemma 6

Lemma 7

Lemma 8

Lemma 9

Figure B.10: Structure of the proof for Proposition 5.

Taken together, Lemmas 7, 8 and 9 prove Proposition 5. Conditions D1, D2, D3 and
D4 are jointly sufficient because if all of them are satisfied, there will be no incentives to
deviate to any strategy in [0, T ]. If one of these conditions is violated, the payoff of some
strategy will exceed the equilibrium payoff.

Proposition 6 A combination of strategies (T, T ) is a symmetric sophisticated player
equilibrium (“no teaching” equilibrium) if and only if condition N1 is satisfied:

t̂2(0) ≥ T (1− L/H) (N1)

Proof.
If there is a symmetric equilibrium with y∗ = T , it must hold that:

Π(T, T ) ≥ Π(y, T ), ∀y ∈ [0, T ]

The structure of the proof is shown in Figure B.11. Condition (12d) is satisfied, there-
fore equilibrium payoffs are Π(T, T ) = Π4(T, T ) = TL. Deviation payoffs Π(y, T ) are
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Π(T, T ) ≥ Π(y, T ),∀y ∈ [0, T ]

Π4(T, T ) ≥ Π(y, T ),∀y ∈ [0, T ]

{
Π4(T, T ) ≥ Π2(0, T )
Π4(T, T ) ≥ Π4(y, T ),∀y ∈ [y′, T ]

N1
Always satisfied

Figure B.11: Structure of the proof for Proposition 6.

calculated either as Π4(y, T ) if y ∈ [y′, T ] or as Π2(y, T ) if y ∈ [0, y′), where y′ solves
t̂2(y′) = T . In the former case, Π4(y, T ) = yL, below the payoff of TL provided by strategy
y = T , therefore the “no teaching” equilibrium exists. In the latter case, deviation payoffs
are:

Π(y, T ) = Π2(y, T ) = yL+ (T − t̂2(y))H

Lemma 3 implies that argmaxy(Π2(y, T )) = 0, that is the most profitable deviation is
to strategy y = 0. There will be no incentives to deviate to this strategy if the following
condition (N1) holds:

Π4(T, T ) ≥ Π2(y, T ) ⇔
TL ≥ (T − t̂2(0))H ⇔
t̂2(0) ≥ T (1− L/H)

If condition N1 is satisfied, there will be no incentives to deviate to y = 0 and there would
be no other profitable deviations, therefore the “no teaching” equilibrium would exist. If
N1 is not satisfied, payoffs could be increased by choosing strategy y = 0.

Appendix B.5. Corollary 1

Corollary 1. If a sophisticated player s uses strategy ys = y and the other sophisticated
players use strategies y−s = {(ȳ)×(S−1)}, the total payoff received by player s over period
[0, T ] is:

Π(y, ȳ) =


Π1 = yL+ (T − t̂1(y, ȳ))H if t̂1(y, ȳ) ≤ T , t̂2(y) ≥ ȳ, t̂3(ȳ) ≥ y

Π2 = yL+ (T − t̂2(y))H if t̂2(y) < ȳ

Π3 = t̂3(ȳ)L+ (y − t̂3(ȳ))M + (T − y)H if t̂3(ȳ) < y

Π4 = yL if t̂1(y, ȳ) > T

where t̂1(y, ȳ), t̂2(y) and t̂3(ȳ) are specified in Proposition 3.
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Proof.
The payoff function depends on the switching period of myopic players, which is deter-

mined by one of the four equations in condition (8). Each possibility is shown in Figure
B.12. Consider panel (a), which illustrates a situation where all sophisticated players switch
to A first,23 and myopic players follow later, therefore their switching time is calculated
as t̂1(y, ȳ). The participation threshold is not exceeded at any time prior to t̂1(y, ȳ) and is
exceeded afterwards, therefore the payoff flow of a sophisticated player is L prior to time y,
0 between time y and t̂1(y, ȳ) and H afterwards. The sum of payoffs in this case would be
equal to Π1(y, ȳ) = yL+(T − t̂1(y, ȳ))H. Panel (a), however, applies only if myopic players
switch after all sophisticated ones, that is if t̂2(y) ≥ ȳ and t̂3(ȳ) ≥ y, and if switching
occurs prior to time T.

t

Panel (a): t̂(y, ȳ) = t̂1(y, ȳ)

t

Panel (c): t̂(y, ȳ) = t̂3(ȳ)

t

Panel (b): t̂(y, ȳ) = t̂2(y)

t

Panel (d): t̂(y, ȳ) > T

0 y ȳ t̂1(y, ȳ) T 0 ȳ t̂3(ȳ) y T

0 y t̂2(y) ȳ T 0 ȳ y T t̂1(y, ȳ)

L 0 H L M H

L 0 H L 0

Figure B.12: Stage game payoffs for every possible case. Panel numbering corresponds to equations in
(12).

Another possibility is that myopic players switch after observing only one sophisticated
player switching to A, a case illustrated in panel (b). Then the sophisticated player will
receive a payoff flow equal to L at any time prior to y, a flow of 0 between time y and t̂2(y)
and a flow of H between t̂2(y) and T. The sum of payoffs in this case would be equal to
Π2(y, ȳ) = yL+ (T − t̂2(y))H. Panel (b) applies only if t̂2(y) < ȳ.

In a similar way, (S − 1) sophisticated players may switch first, followed by myopic
players and then by a single sophisticated player, illustrated in panel (c). Sophisticated
player would receive L until time t̂3(ȳ), M from t̂3(ȳ) to y and H afterwards. The sum of
payoffs would therefore be equal to Π3(y, ȳ) = t̂3(ȳ)L+(y− t̂3(ȳ))M +(T −y)H. Panel (c)
applies only if t̂3(ȳ) < y.

Finally, myopic players may never switch to A, as illustrated in panel (d). In this case
the sophisticated player would receive L until time y, and 0 afterwards, thus the total
payoff would be Π4(y, ȳ) = yL.

23Panel (a) illustrates the situation with y < ȳ, but the payoff calculation for y ≥ ȳ would be equivalent.
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Appendix B.6. Corollaries 2, 3 and 4

Corollary 2. If sophisticated players have a longer planning horizon, then:

1. The speed of transition in any equilibrium is not affected.

2. “Immediate teaching” equilibrium exists for a larger set of other parameter values.

3. “Delayed teaching” equilibrium exists for a larger set of other parameter values.

4. “No teaching” equilibrium exists for a smaller set of other parameter values.

Proof.
Part 1 follows from the definition of the switching period, which depends only on myopic

players, and myopic players do not take future payoffs into account. For part 2, note that
only condition I2 depends on the planing horizon, and I2 is satisfied for a larger set of
parameters when T is higher. For part 3, note that conditions D2 and D4 depend on the
length of the planning horizon, and both are satisfied for a larger set of parameters when
T is larger. Part 4 holds because condition N1 is satisfied for a smaller set of parameters
when T is larger.

Corollary 3. If there are more sophisticated players, then:

1. Transition is faster in the “delayed teaching” and “immediate teaching” equilibria.

2. The effect on the existence of an “immediate teaching” equilibrium or “delayed teach-
ing” equilibrium is ambiguous:

(a) there are more incentives to deviate to neighboring choice plans
(b) there are less incentives to never choose A.

3. There is no change in the existence conditions of the “no teaching” equilibrium.

Proof.
This proof as well as other proofs on comparative statics rely on additional lemmas

presented in Appendix B.8. For part 1, see Lemmas 11 and 12. To see part 2 for the
“immediate teaching” equilibrium, note that both condition I1 and condition I2 depend
on player composition. A larger number of sophisticated players leads to I1 being satisfied
for a smaller set of values of other parameters. On the other hand, a larger number of
sophisticated players makes condition I2 satisfied for a larger set of parameters because
t̂1(0, 0) is decreasing in S (see Lemma 11). For the “delayed teaching” equilibrium, all
four conditions depend on the number of sophisticated players. Incentives to deviate to
neighbouring strategies are determined by condition D2, which is satisfied for a smaller
set of parameters when there are more sophisticated players. To see it, notice that ∂y∗

∂S
< 0

(Lemma 12), therefore a higher S decreases y∗, and D2 is less likely to be satisfied. In-
centives to deviate to corner points are determined by conditions D1, D3 and D4, all
of which are satisfied for a larger set of parameter values when there are more sophisti-
cated players. Conditions D3 and D4 are satisfied for a larger set of parameters because
∂t̂1(y∗,y∗)

∂S
< ∂y∗

∂S
< ∂y∗

∂S
L/H < 0 (Lemma 14 and 12). Condition D1 is also satisfied for

a larger set of parameters because ∂t̂1(y∗,y∗)
∂S

< 0, from Lemma 12. Part 3 holds because
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outcomes in the “no teaching” equilibrium are not affected by the number of sophisticated
players.

Corollary 4. If the history of inefficient coordination is longer, then:

1. Transition is slower in the “immediate teaching” equilibrium but faster in a “delayed
teaching” equilibrium.

2. “Immediate teaching” equilibrium exists for a smaller set of other parameter values

3. The effect on the existence of a “delayed teaching” equilibrium is ambiguous

4. “No teaching” equilibrium exists for a larger set of other parameter values.

Proof.
Part 1 holds because the derivative of t̂1(0, 0) with respect to Th is positive while the

derivative of t̂1(y∗, y∗) is negative, as shown in Lemma 11 and Lemma 12. For part 2,
parameter Th affects conditions I1 and I2. An increase in Th leads to I1 being satisfied for
a smaller set of parameter values, because γTh decreases. Condition I2 is also less likely
to be satisfied because of an increase in t̂1(0, 0). For part 3, notice that an increase in
Th satisfies conditions D1, D3 and D4 for a larger set of parameter values, but satisfies
condition D2 for a smaller set of parameter values. Condition D1 is satisfied for a larger

set of parameter values because ∂t̂1(y∗,y∗)
∂Th

< 0. Conditions D3 and D4 are also satisfied

for a larger set of parameter values because ∂t̂1(y∗,y∗)
∂Th

= ∂y∗

∂Th
< ∂y∗

∂Th
L/H and t̂2(0)

∂Th
> 0, from

Lemma 11, 12 and 13. Condition D2 is satisfied for a smaller set of parameters because
∂y∗

∂Th
< 0, from Lemma 14. Part 4 holds because ∂t̂2(0)

∂Th
> 0, from Lemma 13.

Appendix B.7. Lemmas 1-10

Lemma 1: If two choice plans of the sophisticated player prescribe the same action at
time t, the payoff flow is higher for the choice plan that induced higher beliefs of myopic
players:

π[c′s(t), {c−s(t), rM(t, {c′s, c−s})}] ≥ π[c′′s(t), {c−s(t), rM(t, {c′′s , c−s})}]
if x′(t) ≥ x′′(t) and c′s(t) = c′′s(t)

where x′(t) is the belief held by myopic players if the sophisticated player uses choice plan
c′s and x′′(t) is the belief if the sophisticated player uses choice plan c′′s .

Proof:
Consider two choice plans c′s and c′′s that prescribe the same action at time t, but

different actions prior to time t so that myopic players hold higher beliefs following the
history generated by c′s than by c′′s . Equation (6) in Proposition 1 implies that if myopic
players choose A at t following the history generated by c′′s , they must also do so following
the history generated by c′s. Since the choice plans of other strategic players are held
constant, a higher tendency to choose A by myopic players increases the total number
of other players who choose A at time t. Assumption 1 implies that payoffs are weakly
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increasing in the number of other players choosing A, therefore the payoff generated by c′s
must be at least as high as the payoff generated by c′′s :

π[c′s(t), {c−s(t), rM(t, {c′s, c−s})}] ≥ π[c′′s(t), {c−s(t), rM(t, {c′′s , c−s})}]

Lemma 2: All choice plan profiles for sophisticated players with which myopic players
switch from A to B are strictly dominated:

ABM ∩ Us = ∅
Proof.
Suppose that cS ∈ ABM . Then there are two points in time, t1 and t2 (with t1 < t2),

such that myopic players choose A at time t1 and B at time t2. Find the first switching
period ts ∈ (t1, t2], such that A is chosen in the interval [t1, ts), but B is chosen at time ts.
Since all myopic players share the same history and update beliefs the same way, myopic
players will share the same value of ts and will choose A in the interval [t1, ts). If all
sophisticated players were also choosing A in the interval [t1, ts), the weighted fictitious
play rule would imply that xm(ts) ≥ xm(t1) therefore if A was the best-response for a
myopic player at time t1, it will remain a best-response at time ts, contradicting the
definition of ts. Therefore, a myopic player will choose B at time ts only if at least one
sophisticated player chose B in the interval [t1, ts), that is if cs(t) = B for some s ∈ S and
t ∈ [t1, ts). Denote the choice plan of this sophisticated player by c̃s. We will show that
c̃s is dominated by a choice plan c′s that prescribes A in the entire interval [t1, ts) and is
otherwise the same as c̃s. First, the sum of payoff flows generated by c′s in the interval
[t1, ts) is strictly higher than that generated by c̃s because all myopic players are choosing
A in this interval, and therefore Assumption 2 implies that the threshold will be exceeded.
Second, payoffs generated in the interval (ts, T ] will be equal or higher than those of c̃s
because myopic players will hold higher beliefs if c′s is chosen (due to more A choices being
observed) and consequently Lemma 1 implies that higher beliefs will lead to weakly higher
payoffs for the sophisticated player at any time t > ts.

Lemma 3. ∂t̂2(y)
∂y

> 1.

Proof.
Use the definition of t̂2(y) from equation (B.12):

t̂2(y) =
log( 1

N−1
− I−1)− log(γ−y 1

N−1
− γThI−1)

log(γ)

The partial derivative is calculated as follows:

∂t̂2(y)

∂y
=

1

− log(γ)
× 1

γ−y 1
N−1
− γThI−1

× γ−y −1

N − 1
log(γ) =

=
γ−y 1

N−1

γ−y 1
N−1
− γThI−1

> 1
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The latter inequality holds because the numerator and the denominator are positive
and γThI

−1
> 0.

Lemma 3 implies that if t̂2(0) < T , it would be optimal for all sophisticated players to
choose y = 0: increasing y by an amount of ε would increase the payoffs by εL, because
of a longer delay, but would simultaneously decrease the payoffs by more than εH because
of the longer switching period of myopic players. Lemma 3 therefore shows that when
a transition to the efficient state can be achieved by a single sophisticated player, there
will be a unique equilibrium in which all sophisticated players immediately use strategic
teaching.

Lemma 4. Π1(0, 0) ≥ Π1(y, 0), ∀y ∈ [0, y′) if and only if condition I1 is satisfied:

S −H/L
N − 1

≤ γThI−1 (I1)

where y′ solves t̂1(y′, 0) = T .

Proof.
Payoffs for any y ∈ [0, y′) are calculated the following way, from equation (12a):

Π1(y, 0) = yL+ (T − t̂1(y, 0))H (B.19)

A necessary condition for the payoff to be maximized at y = 0 is the non-positive sign of
the first derivative of (B.19) with respect to y at y = 0. Instead of taking the derivative of
the profit function, we first transform it by applying a strictly increasing function −γ(·/H),
which preserves the sign of the derivative when γ ∈ (0, 1). The first derivative of the
transformed profit function is non-positive when the following condition holds:

∂ − γΠ1(y,0)/H

∂y
≤ 0 ⇔

log(γ)γT

I−1 − S
N−1

× γ−y
(

1

N − 1
(L/H − 1) +

S − 1

N − 1
L/H − γThI−1L/H

)
≤ 0 ⇔

γ−y
1

N − 1
(L/H − 1) +

S − 1

N − 1
L/H − γThI−1L/H ≤ 0 (B.20)

Inequality (B.20) must hold for y = 0:

∂ − γΠ1(y,0)/H

∂y

∣∣∣∣
y=0

≤ 0 ⇔

1

N − 1
(L/H − 1) +

S − 1

N − 1
L/H − γThI−1L/H ≤ 0 ⇔

L/H
S

N − 1
− 1

N − 1
≤ γThI−1L/H ⇔

S −H/L
N − 1

≤ γThI−1 (B.21)
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To obtain the second derivative, differentiate the the left-hand side of (B.20) with
respect to y and simplify to get:

∂2 − γΠ1(y,0)/H

∂y2
=

1

N − 1
(L/H − 1)(−1) log γ

Note that the second derivative is always negative because γ < 1 and H > L. If
condition I1 is satisfied, the first derivative will be non-positive at point y = 0, and it will
non-positive for any y ∈ (0, t′). Payoffs would therefore be maximized by choosing y = 0.
If I1 does not hold, the first derivative is positive at point y = 0 and profits could be
increased by choosing y > 0.

Lemma 5. Π1(0, 0) ≥ Π4(T, 0) if and only if condition I2 is satisfied:

t̂1(0, 0) ≤ T (1− L/H) (I2)

Proof.
Deviation payoffs are calculated from (12d): Π4(T, 0) = TL. There are no incentives

to deviate if
Π1(0, 0) ≥ Π4(T, 0) ⇔ t̂1(0, 0) ≤ T (1− L/H)

Lemma 6.

Π1(y∗, y∗) ≥ Π(y, y∗),∀y ∈ [0, T ] ⇔


Π1(y∗, y∗) ≥ Π2(0, y∗)
Π1(y∗, y∗) ≥ Π1(y, y∗),∀y ∈ [y′′, y′]
Π1(y∗, y∗) ≥ Π4(T, y∗)

If t̂3(y∗) ≤ T , then y′ = t̂3(y∗), otherwise y′ solves t̂1(y′, y∗) = T . If t̂2(0) > y∗, then
y′′ = 0, otherwise y′′ solves t̂2(y′′) = y∗.

Proof. To specify the deviation payoff, Π(y, y∗), we will first look at deviations upwards
(y > y∗) and then at deviations downwards (y < y∗). First, consider a deviation upwards
to a strategy y = yD > y∗. The calculation of payoff Π(yD, y

∗) depends on the size of the
deviation: if yD is sufficiently small, the payoff is determined by Π(yD, y

∗) = Π1(yD, y
∗),

but if y is large, myopic players may switch to A prior to y (see an illustration in Figure
B.13, panel a), or myopic players may never switch to A (Figure B.13, panel b). The first
option is possible only if the myopic players switch to A without ever observing player s
choose A, that is if t̂3(y∗) < T . Then the deviation payoffs for a choice plan yD ∈ (t̂3(y∗), T ]
are calculated by Π3(yD, y

∗). But Π3(y, y∗) is decreasing in y (because H > M), thus any
strategy in this interval would be strictly dominated by strategy y = t̂3(y∗). Figure B.13
indicates dominated strategies by an arrow pointing towards the strategy that dominates.
Checking for profitable deviations upwards therefore only requires checking for potential
deviations in the interval (y∗, t̂3(y∗)]. Also note that yD ≤ t̂3(ȳ) together with condition
D1 imply that deviation payoffs for strategies yD ∈ (0, t̂3(ȳ)) are equal to Π1(yD, y

∗).
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yD

Panel (a): t̂3(y∗) ≤ T

Π(yD, y
∗) =

yD

Panel (b): t̂3(y∗) > T

0 y′′ y∗ t̂3(ȳ) T 0 y′′ y∗ y′ T

Π2(yD, y
∗) Π1(yD, y

∗) Π3(yD, y
∗) Π2(yD, y

∗) Π1(yD, y
∗) Π4(yD, y

∗)

Figure B.13: Calculation of deviation payoffs, Π(yD, y
∗) for every possible value of yD. Green dashed line

and green ticks mark undominated strategies. Red arrows mark dominated strategies and the arrow points
to the dominant strategy.

The second possibility is that t̂3(y∗) ≥ T , so that myopic players do not switch prior to
T if they observe only (S−1) sophisticated players switching at y∗ (see Figure B.13, panel
b). Then because t̂1(T, y∗) = t̂3(y∗) > T , t̂1(y∗, y∗) < T (from condition D1) and t̂1(·, y∗)
is continuous, there must be a number y′ ∈ (y∗, T ) such that t̂1(y′, y∗) = T . If yD ∈ (y∗, y′],
(12a) is satisfied and Π(yD, y

∗) = Π1(yD, y
∗), because t̂1(y, y∗) ≤ T , t̂2(yD) > yD > y∗ and

t̂3(y∗) > T > y∗. The payoff from any yD > y′ is determined by Π4(y, y∗) = yL, and thus
all strategies yD ∈ (y′, T ] are dominated by yD = T . Overall, to check for the existence
of a “delayed teaching” equilibrium it is sufficient to compare equilibrium payoffs to the
payoffs from yD ∈ (y∗, y′) ∪ T .

Now consider a possible deviation downwards to yD < y∗. If yD is only slightly below y∗,
the switching period is t̂1(yD, y

∗) and the deviation payoffs are Π1(yD, y
∗). But if yD is low

enough, myopic players may switch to A prior to y∗, at time t̂2(yD). If this does not happen,
that is if t̂2(0) > y∗, payoffs from all deviations downwards are calculated by Π1(yD, y

∗).
Otherwise, if t̂2(0) ≤ y∗, there will be some value y′′ that satisfies t̂2(y′′) = y∗. For any y
below this value, payoffs will be determined by Π2(y, y∗). From Lemma 3, any y ∈ (0, y′′)
is dominated by y = 0, therefore to check if there are any profitable deviations downwards
it is necessary to compare equilibrium payoffs to payoffs from strategies yD ∈ (y′′, y∗) ∪ 0.

Lemma 7. Π1(y∗, y∗) ≥ Π1(y, y∗), ∀y ∈ (y′′, y′), if and only if condition D2 is satisfied:

log( S−H/L
I−1(N−1)

)

log(γ)
− Th > 0, (D2)

Proof.
We will calculate the first derivative of the profit function and determine under what

conditions the derivative at the equilibrium point is equal to 0 and the second derivative
is is non-positive, which ensures that the equilibrium is a local maximum point. We first
apply a strictly increasing function −γ(·/H) to the profit function an then differentiate the
transformed function with respect to y to obtain the following expression:
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−γΠ(y,y∗)/H = −γyL/H+Tγ−t̂1(y,y∗) =

=
1

I−1 − S
N−1

(
γy(L/H−1)+T 1

N − 1
+ γyL/H+T−y∗ S − 1

N − 1
− γyL/H+T+ThI−1

)
=

=
γyL/H+T

I−1 − S
N−1

(
γ−y

1

N − 1
+ γ−y

∗ S − 1

N − 1
− γThI−1

)
(B.22)

where γ t̂1(y,y−i) has been substituted from (B.8). Differentiate the transformed profit
function in (B.22) with respect to y to get

∂ − γΠ(y,y∗)/H

∂y
=

log(γ)

I−1 − S
N−1

× (γyL/H+T−y 1

N − 1
(L/H − 1)+

+ γyL/H+T−y∗ S − 1

N − 1
L/H − γyL/H+T+ThI−1L/H) =

=
log(γ)γyL/H+T

I−1 − S
N−1

(
γ−y

1

N − 1
(L/H − 1) + γ−y

∗ S − 1

N − 1
L/H − γThI−1L/H

)
(B.23)

The first derivative is non-negative if:

∂ − γΠ(y,y∗)/H

∂y
≥ 0 ⇔

γ−y
L/H − 1

N − 1
+ γ−y

∗ S − 1

N − 1
L/H − γThI−1L/H ≥ 0 ⇔

γ−y ≤
γ−y

∗
( S−1
N−1

)− γThI−1

H/L−1
N−1

(B.24)

The first derivative at point y = y∗ is non-negative if:

∂ − γΠ(y,y∗)/H

∂y

∣∣∣∣
y=y∗
≥ 0 ⇔

γ−y
∗H/L− 1

N − 1
≤ γ−y

∗ S − 1

N − 1
− γThI−1 ⇔

γTh+y∗ ≤ S −H/L
I−1(N − 1)

⇔

y∗ ≥
log
(

S−H/L
I−1(N−1)

)
log(γ)

− Th (B.25)

The derivative is equal to 0 only if y∗ satisfies (B.25) with equality:
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y∗ =
log
(

S−H/L
I−1(N−1)

)
log(γ)

− Th (B.26)

There will be at most one y∗ that satisfies (B.26) for any given set of parameters, there-
fore there can be at most one “delayed teaching” equilibrium in a given game. Equation
(B.26) specifies the equilibrium strategy. A necessary condition for the existence of a “de-
layed teaching” equilibrium is 0 < y∗ < T . But note that condition D1 from Proposition
5 implies that y∗ < T because y∗ < t̂1(y∗, y∗), therefore the only additional condition is
that y∗ > 0.

Condition D2:
log
(

S−H/L
I−1(N−1)

)
log(γ)

− Th > 0

Next, we identify the sign of the second order derivative. The second derivative is
obtained by differentiating (B.23) with respect to y:

∂2 − γΠ(y,y∗)/H

∂y2
=

log(γ)2γyL/H+T

I−1 − S
N−1

× (γ−y
1

N − 1
(L/H − 1)2+

+ γ−y
∗ S − 1

N − 1
(L/H)2 − γThI−1(L/H)2) (B.27)

The second order derivative is negative if:

∂2 − γΠ(y,y∗)/H

∂y2
< 0 ⇔

γ−y
1

N − 1
(L/H − 1)2 + γ−y

∗ S − 1

N − 1
(L/H)2 − γThI−1(L/H)2 > 0 (B.28)

If condition D2 is satisfied, the expression of y∗ in (B.26) can be used to rewrite (B.28)
as follows:

γy
∗−y >

L

L−H
(B.29)

Because L < H and γ ∈ (0, 1), condition (B.29) is satisfied for all y. The first order
condition is therefore both necessary and sufficient for y = y∗ to be a local maximum point.
Moreover, equation (B.29) states that the second derivative is negative not only at y = y∗,
but also for any other value of y. Since the first derivative is equal to 0 at point y = y∗,
and it is decreasing at all y, the payoff function must be increasing at any point y < y∗

and decreasing at any point y > y∗. Continuity of the profit function therefore implies
that y = y∗ is not only a local, but also a global maximum in the interval (y′′, y) as long
as condition D2 is satisfied.
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Lemma 8. Π1(y∗, y∗) ≥ Π2(0, y∗) if and only if condition D3 is satisfied:

t̂1(y∗, y∗)− y∗L/H ≤ t̂2(0), (D3)

Proof.
Use the profit specification in (8) to get the following expressions for the two profit

functions:
Π1(y∗, y∗) = yL+ (T − t̂1(y∗, y∗))H

Π2(0, y∗) = (T − t̂2(0))H

There are no incentives to deviate to y = T if the former expression exceeds the latter:

Π1(y∗, y∗) ≥ Π2(0, y∗) ⇔ t̂1(y∗, y∗)− y∗L/H ≤ t̂2(0)

Lemma 9. Π1(y∗, y∗) ≥ Π4(T, y∗) if and only if condition D4 is satisfied:

t̂1(y∗, y∗)− y∗L/H ≤ T (1− L/H), (D4)

Proof.
From (8), deviation payoffs are as follows:

Π4(T, y∗) = TL

There are no incentives to deviate to y = T if

Π1(y∗, y∗) ≥ Π4(T, y∗) ⇔ t̂1(y∗, y∗)− y∗L/H ≤ T (1− L/H)

Lemma 10. t̂1(y, ȳ) ≤ t̂2(y) and t̂1(y, ȳ) ≤ t̂3(ȳ)

Proof.
Note that t̂1(y, ȳ) is increasing both in y and in ȳ, from equation (B.9). If y is

held constant, at any given time t the maximum value of t̂1(y, ȳ) will be reached at
ȳ = t. Substituting ȳ = t into equation (B.6) reduces it to equation (B.11), thus
maxȳ t̂1(y, ȳ) = t̂2(y). Likewise, setting y = t in equation (B.6) reduces it to equation
(B.14), thus maxy t̂1(y, ȳ) = t̂3(ȳ). Therefore t̂1(y, ȳ) can never exceed t̂2(y) or t̂3(ȳ).
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Appendix B.8. Lemmas 11-14 (Comparative Statics)

Appendix B.8.1. Speed of Transition in the Immediate Teaching Equilibrium

The following lemmas show the calculations of comparative statics for t̂1(y, y) with any
y; naturally, they will also hold for the case when y = 0.

Lemma 11. Speed of transition to the efficient state in the “immediate teaching” equilib-
rium depends on the parameter values the following way:

1. ∂t̂1(y,y)
∂y

> 0

2. ∂t̂1(y,y)
∂S

< 0

3. ∂t̂1(y,y)
∂Th

> 0

Proof.
Assume that the ‘immediate teaching” equilibrium exists, so that t̂1(0, 0) < T and

S
N−1

> I−1. The switching period t̂1(y, y) is calculated using equation (B.9):

t̂1(y, y) =
1

− log(γ)

[
log

(
γ−y

S

N − 1
− γThI−1

)
− log

(
S

N − 1
− I−1

)]
(B.30)

1. Derivative with respect to y:

∂t̂1(y, y)

∂y
=

S
N−1

S
N−1
− γy+ThI−1

(B.31)

∂t̂1(y,y)
∂y

> 0 because S
N−1

> I−1 and γ ∈ (0, 1).

2. Derivative with respect to S:

∂t̂1(y, y)

∂S
=

1

log(γ)

1

N − 1

(
1

S
N−1
− I−1

− 1
S

N−1
− γTh+yI−1

)
=

=
1

log(γ)

1

N − 1

I−1(1− γTh+y)

( S
N−1
− I−1)( S

N−1
− γTh+yI−1)

(B.32)

∂t̂1(y,y)
∂S

< 0 because S
N−1

> I−1 and γ ∈ (0, 1).

3. Derivative with respect to Th:

∂t̂1(y, y)

∂Th
= − 1

log(γ)

1

γ−y S
N−1
− γThI−1

×−I−1γTh log(γ) (B.33)

∂t̂1(y,y)
∂Th

> 0 because S
N−1

> I−1 and γ ∈ (0, 1).
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Appendix B.8.2. Speed of Transition in the Delayed Teaching Equilibrium

Lemma 12. Speed of transition to the efficient state in a “delayed teaching” equilibrium
depends on the parameter values the following way:

1.
∂t̂1(y∗, y∗)

∂S
< 0

2.
∂t̂1(y∗, y∗)

∂Th
= −1

Proof.
Assume that a “delayed teaching” equilibrium exists, so that t̂1(y∗, y∗) < T and S

N−1
>

I−1. In a “delayed teaching” equilibrium, changes in parameter values affect both the
equilibrium strategies of sophisticated players and the switching period of myopic players,
holding the strategies of sophisticated players constant. To identify the overall effect, we
substitute the expression of y∗ from equation (B.26) into (B.30) and obtain the following
result:

t̂1(y∗, y∗) =
1

− log(γ)

[
log

(
I−1(N − 1)γTh

S −H/L
S

N − 1
− γThI−1

)
− log

(
S

N − 1
− I−1

)]
=

=
1

− log(γ)

[
log(H/L) + log(γTh) + log(I−1)− log(S −H/L)− log

(
S

N − 1
− I−1

)]

1. Derivative with respect to S:

∂t̂1(y∗, y∗)

∂S
=

1

log(γ)

(
1

S −H/L
+

1

( S
N−1
− I−1)(N − 1)

)
(B.34)

∂t̂1(y∗,y∗)
∂S

< 0 because S
N−1

> I−1, γ ∈ (0, 1) and S−H/L > 0 (if a “delayed teaching”
equilibrium exists).

2. Derivative with respect to Th:

∂t̂1(y∗, y∗)

∂Th
= −1 (B.35)

Appendix B.8.3. Speed of Transition if One Player is Teaching

We show how the parameters of interest affect t̂2(0), which measures the transition
speed if a single sophisticated player always plays A while all other sophisticated players
choose B. This derivative is necessary for Corollary 3 and Corollary 4 because the existence
of the “no teaching” equilibrium depends on t̂2(0).
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Lemma 13. Speed of transition to the efficient state if only one sophisticated player is
choosing A depends on the parameter values the following way:

1.
∂t̂2(0)

∂S
= 0

2.
∂t̂2(0)

∂Th
> 0

Proof.
Suppose that t̂2(0) < T , which holds only if 1

N−1
> I−1. Then t̂2(0) is calculated the

following way, from expression (B.12):

t̂2(0) =
log( 1

N−1
− I−1)− log( 1

N−1
− γThI−1)

log(γ)
(B.36)

1. Derivative with respect to S:

∂t̂2(0)

∂S
= 0 (B.37)

2. Derivative with respect to Th:

∂t̂2(0)

∂Th
=

γThI
−1

1
N−1
− γThI−1

(B.38)

∂t̂2(0)
∂Th

> 0 because 1
N−1

> I−1.

Appendix B.8.4. Equilibrium Strategies in the Delayed Teaching Equilibrium

Another variable if interest is the strategy used by sophisticated players in a “delayed
teaching” equilibrium, y∗, which has an effect on the existence conditions of the “delayed
teaching” equilibrium.

Lemma 14. The strategies used by sophisticated players in a “delayed teaching” equilib-
rium depend on parameter values the following way:

1.
∂y∗

∂S
< 0

2.
∂y∗

∂Th
= −1

In addition:

3.
∂y∗

∂S
>
∂t̂1(y∗, y∗)

∂S
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Proof.
Equilibrium strategy is determined by equation (B.26):

y∗ =
log
(

S−H/L
I−1(N−1)

)
log(γ)

− Th

1. Derivative with respect to S:

∂y∗

∂S
=

1

log(γ)

(
1

S −H/L

)
(B.39)

∂y∗

∂S
< 0 because γ ∈ (0, 1) and S−H/L > 0 (because a “delayed teaching” equilibrium

exists).

2. Derivative with respect to Th:
∂y∗

∂Th
= −1 (B.40)

3. Comparison to the derivative of t̂1(y∗, y∗):
Recall the derivative of t̂1(y∗, y∗) with respect to S from equation (B.34):

∂t̂1(y∗, y∗)

∂S
=

1

log(γ)

(
1

S −H/L
+

1

( S
N−1
− I−1)(N − 1)

)

The derivative of y∗ calculated in (B.39) is strictly higher (closer to 0) than the
derivative of t̂1(y∗, y∗) because log(γ) < 0 and 1

( S
N−1

−I−1)(N−1)
> 0.
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