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Chapter 1

Introduction

Predictions about choices in games are typically made using a Nash equilib-

rium or one of its refinements, but the method by which players should reach

an equilibrium is subject to debate. One possibility is that non-equilibrium out-

comes are ruled out by deduction, but such explanation requires questionable

assumptions of common knowledge of rationality, unlimited cognitive abilities

and correct beliefs (see Mailath, 1998, or Perea, 2007, for a discussion). An

alternative interpretation is that Nash equilibrium emerges as a long-run out-

come of a dynamic process such as belief learning (Kalai and Lehrer, 1993)

or replicator dynamics (Weibull, 1995). Convergence through learning requires

weaker assumptions about rationality, but effective learning does require ac-

curate feedback (Tversky and Kahneman, 1986): feedback about payoffs helps

identify and avoid strategies that perform badly (reinforcement learning, e.g.

Erev and Roth, 1998), while feedback about actions taken by others helps form-

ing beliefs that are necessary for best-response dynamics (belief-based learning,

e.g. Cheung and Friedman, 1997).

Chapters in this thesis investigate how manipulations that affect these types

of feedback but not the set of equilibria influence the learning process and the

long-run outcomes of a game. Chapter 2 reports the results of an experiment

in which the reliability of feedback is manipulated by reducing the variability

in opponent’s actions and in the payoff function, leading to dramatically im-

proved convergence rates and reduced behavioural variation in a contest game.

A theoretical model presented in Chapter 3 specifies conditions under which

sophisticated players would be willing to manipulate the feedback observed by

myopic players by taking a suboptimal action in a repeated coordination game.

An experiment in Chapter 4 varies the cost of action disclosure and shows that

higher costs discourage action disclosure and lead to incomplete feedback that
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prevents transitions to an efficient equilibrium.

Chapter 2 uses a Tullock contest as an example of a game in which game

theory fails to make accurate predictions: Nash equilibrium is chosen only 7%

of the time while dominated strategies are chosen more than half of the time. A

common view is that the low explanatory power of a Nash equilibrium results

from the failure of assumptions about risk-neutral and self-interested behav-

ior (see a review in Sheremeta, 2013). However, deviations from theoretical

predictions may be a result of complexities that make optimization difficult

for boundedly rational players. Understanding the source of the discrepancy

between choices and theoretical predictions would point to the correct way to

address this problem. If the discrepancy arises because of non-standard pref-

erences, the problem of low explanatory power could be solved by adding such

preferences to the theory. But if the discrepancy results from bounded ratio-

nality, it may be desirable to introduce interventions that would enable players

to learn to behave in an optimal way.

One factor that may limit the opportunities to learn in contests is noisy

feedback arising from a stochastic payoff function. If there were no stochas-

tic elements in the payoff function, dominated strategies would always provide

low earnings and given enough time players should learn to avoid such strate-

gies. In standard contests, however, payoffs are stochastic due to strategic

uncertainty—changes in the actions chosen by other players—and due to non-

strategic uncertainty generated by a randomization device. In a 2x2 design we

reduce both types of uncertainty: strategic uncertainty is lowered by matching

players to computers who play the same action for a certain number of rounds

and uncertainty about the prize allocation is lowered by paying the expected

value instead of playing a lottery. We find that when no uncertainty is present,

the frequency of dominated actions decreases dramatically and the median re-

sponse is almost always equal to the theoretical prediction. When either type of

uncertainty is present, choices are very different from the theoretical prediction

and dominated strategies are chosen more than half of the time.

Feedback may be manipulated by the experimenter, but it also depends on

the actions taken by other players. If feedback affects behavior, a strategic

player may therefore attempt to alter the future behavior of other group mem-

bers by manipulating their observed feedback. A certain action could therefore

be chosen just for the information it conveys to other group members rather

than for the immediate profit it generates. Chapter 3 and chapter 4 use

theory and experiments to test whether such strategic motives could explain

deviations from an inefficient equilibrium in N-person critical mass games. In
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these games non-equilibrium outcomes are observed much less frequently than

in contests, as typically all groups rapidly coordinate on a common action.

However, a social dilemma arises if play converges to an inefficient equilibrium:

any unilateral deviation from an inefficient equilibrium would decrease deviant’s

immediate utility, even though a Pareto improvement could be achieved by col-

lective action. Inefficient equilibrium persists because staying in it is optimal

given the belief that others will stay too. If beliefs are the core of the problem,

players who anticipate the belief formation process may maximize their earnings

by deviating from an inefficient equilibrium because a decrease in immediate

payoffs is more than compensated by the benefits of efficient coordination in the

future. Chapter 3 shows that under certain conditions self-interested strategic

players would be willing to deviate from an inefficient equilibrium. Chapter 4

tests whether players in an experiment are actually motivated by such strate-

gic considerations and whether transitions to an efficient equilibrium are more

frequent when strategic teaching is made easier by reducing the cost of action

disclosure.

Chapter 3 proposes a solution concept that combines a learning model

based on fictitious play and the concept of a Nash equilibrium by assuming

that some players are myopic and update beliefs based on observed history

while others are sophisticated and correctly anticipate the actions of all other

players. The proposed solution concept is a combination of sophisticated player

strategies that are optimal given the learning process of the myopic players

and the strategies chosen by other sophisticated players. A combination of

learning from history and strategic reasoning produces action paths in which

sophisticated players find it optimal to use strategic teaching, and the existence

of such action paths depends both on the history observed by myopic players

and on the length of the reasoning horizon of sophisticated players.

Chapter 4 tests whether deviations from an inefficient equilibrium are mo-

tivated by strategic considerations and whether transitions to an efficient equi-

librium are more likely if information about one’s action can be provided at a

low cost. In an experiment players could disclose their action to other group

members by paying a cost that was varied across treatments. Players who only

care about immediate payoffs would not be willing to pay the cost because

disclosure provides no immediate benefits, but strategic players may do so if

they expect that a disclosed action increases the chances of a transition to the

efficient equilibrium. Data shows that many players are willing to pay to re-

veal their actions, especially when the costs are low, but only after choosing to

deviate from an inefficient equilibrium. When disclosure costs are low, players
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classified as more farsighted more often deviate from an inefficient equilibrium

and disclose this action, providing further support for the strategic teaching

hypothesis. Higher disclosure costs reduce the tendency to reveal actions, in-

creasing strategic uncertainty and making transitions to an efficient equilibrium

much less likely. In fact, no group moves to the efficient equilibrium when ac-

tion disclosure costs are high, but half of the groups do so when the costs are

low. Belief learning seems to be the most likely explanation for this treat-

ment difference: stated beliefs generally move in accordance to the predictions

of weighted fictitious play, but players who do not disclose their actions are

perceived in a similar way to those who choose the inefficient action. Lack of

feedback resulting from high action disclosure costs seems to introduce frictions

into the learning process, reducing the frequency of transitions to the efficient

equilibrium.



Chapter 2

Behavioural Variation in
Tullock Contests1

2.1 Introduction

Many economic, political and social environments can be described as contests

in which competing agents expend considerable resources (time, effort, money)

in order to increase their chances of winning a “prize”. Examples range from the

competition for mates (Andersson and Iwasa, 1996), patents or research grants

(Baye and Hoppe, 2003), to promotions or other relative reward schemes in firms

(Chen, 2003), lobbying politicians (Baye et al., 1993), elections (Buchanan and

Tullock, 1962), sports competitions (Szymanski, 2003), and ethnic conflicts (Es-

teban and Ray, 2011). Because of their many applications, these environments

have attracted considerable attention in a wide range of fields, both in- and

out-side of economics and there is a mature theoretical literature (for a survey

see Konrad, 2009).

Experimental economists have tried to understand behaviour in contests em-

pirically. The advantage of conducting experiments on contests (as opposed to

empirical field studies) is that effort choices are observable and causal inferences

can be drawn via treatment variations. One result that has emerged from this

literature is that there is huge behavioural variation and Nash equilibrium (NE)

has little explanatory power in typical Tullock contests (see Millner and Pratt,

1989, Potters et al., 1998, Sheremeta, 2010, among others). Figure 2.1 illus-

trates the behavioural variation in experimental Tullock contests and compares

it to first- and second-price auctions.2 Figure shows the cumulative distribution

1This chapter is based on the paper “Behavioural Variation in Tullock Contests” and is co-authored
with Friederike Mengel and J. Philipp Reiß.

2Auctions and contests are both “competitive” allocation games, where everyone bids for a prize
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Figure 2.1: Cumulative Distribution of choices relative to Nash prediction in the contest
(data from Abbink et al., 2010), first-price auction (data from Brosig and Reiss, 2007),
second-price auction (data from Cooper and Fang, 2008) and according to Nash equilibrium.

of observed choices relative to the (risk neutral) Nash prediction for a typical

Tullock contest experiment, a first-price auction (FPA), a second-price auction

(SPA) and according to NE. According to theory, all the mass should be at

1, because all choices should equal the Nash prediction. Evidently, in the two

auction formats (FPA and SPA), the cumulative distribution is pretty similar

to theory. The Nash prediction clearly has something to say about the data

here. In the contest, however, this pattern is completely different. Choices

seem to have little to do with the unique pure strategy Nash equilibrium and

investments are spread across the whole strategy space with no meaningful

concentration around any specific value or range of values.

In this chapter we try to understand why behavioural variation is so large

and why Nash equilibrium (understood more broadly than the risk neutral

point prediction) has so little to say about the data in the standard contest.

By contrast, most of the literature has focused on the so-called “overbidding

phenomenon”, the fact that on average investments are above the risk neutral

Nash equilibrium. Explanations have focused on specific preferences or cor-

relates of individual behaviour with specific forms of bounded rationality (see

a survey by Sheremeta, 2013). Examples of preference based explanations in-

clude spiteful preferences, inequality aversion (Bartling et al., 2009) or the “joy

of winning hypothesis” (Schmitt et al., 2004, Cason et al., 2010). The “over-

but there is one winner. Two differences are that in auctions there is incomplete information, while
there is complete information in the contest we study. In addition, in auctions the prize allocation is
deterministic, while in the typical contest it is non-deterministic.
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bidding phenomenon” has also been explained by QRE (Sheremeta, 2011, Lim

et al., 2014), distortion of probabilities (Baharad and Nitzan, 2008) or learn-

ing (Fallucchi et al., 2013). However, none of these studies explicitly addresses

or explains the large observed behavioral variation. It has been conjectured,

though, that heterogeneity in preferences or demographics might be one expla-

nation (Sheremeta, 2013).

In this chapter we try to explain both the large amount of behavioural vari-

ation observed and the low explanatory power of Nash equilibrium in these

games. We distinguish between two classes of alternative explanations: one

based on preferences, the other on bounded rationality. Potentially, there are

two sources of complexity that can inhibit the explanatory power of NE if

agents are boundedly rational: (i) the difficulty to form correct beliefs and (ii)

the difficulty to formulate best responses (even if beliefs were correct). In our

experiment we vary these two sources of complexity systematically. If complex-

ity is indeed the underlying reason for the large behavioural variation and the

low explanatory power of NE in this game, then we should see (approximate)

Nash behavior once both these sources of complexity are removed.3

In our benchmark treatment dD participants play a standard Tullock con-

test. Treatment eD exogenously manipulates the difficulty to formulate best

responses. This treatment coincides with dD except for the fact that prize

allocation is deterministic. In the light of ample evidence that people find it

difficult to reduce uncertainty (Kahneman and Tversky, 1972), this should make

it easier to formulate best responses. Treatment dT exogenously manipulates

the difficulty of forming correct beliefs. It coincides with dD, but participants

in this treatment face computer opponents who play pre-determined actions

that are announced to participants before they make their choices. Hence there

is no strategic uncertainty in this treatment and forming beliefs about the op-

ponent’s choices is trivial. Finally, treatment eT coincides with dT, but prize

allocation is again deterministic. Hence in this treatment both best response

formulation and belief formation should be easy or trivial, respectively.

Our main findings are as follows. As in previous experiments, investments

in the standard contest (dD) are spread across the whole strategy space and

Nash equilibrium has almost no explanatory power. When only one source of

difficulty is removed (eD or dT), choices are still very different from the Nash

prediction: more than half of the time players choose strategies that are strictly

3Since we do not observe preferences directly, it is hard to say what the “right” Nash equilibrium
benchmark is. Virtually all of the existing literature uses the risk neutral NE as a benchmark (see
survey below). We also use risk neutral expected utility maximizers as a benchmark, but, in addition,
we also consider a wide range of other preferences. The classes of preferences we study include different
risk preferences and social preferences.
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dominated and investments choices are highly variable. However, when both

best response and belief formation are easy or trivial, respectively (eT), players

choose strategies that are very close to the prediction of the risk neutral model

and behavioural variation is much lower. Bounded rationality can therefore

explain the large behavioural variation and low explanatory power of Nash

equilibrium in this game.

In order to understand possible interaction effects between our treatment

manipulations and participants’ (social) preferences, we also conducted a treat-

ment that coincides with eT, but replaces computer players by humans. We

show that our treatment rankings are unaffected by this change. We also show

that all our treatment comparisons and conclusions remain valid if we allow for

risk-aversion, risk seeking preferences or different types of social preferences.

We then ask whether heterogeneity in preferences can explain the large be-

havioural variation in the standard contest. To this end we conduct extensive

simulations where we consider many possible population compositions of agents

with differing risk, social and joy of winning preferences and show that none

of these is able to recover the behavioural variation found in the standard con-

test (dD). We conclude that, while some preference based explanations can

explain the so-called “overbidding phenomenon”, they cannot explain the large

behavioural variation typically found in these games. Reducing the complexity

of the environment, on the other hand, eliminates the large behavioural varia-

tion and leads to behaviour that is very consistent with the predictions of the

risk neutral model.

Complexity has been found to play an important role in other games and

decision-problems. Grimm and Mengel (2012) show that players are able to

learn the Nash equilibrium in normal form games with a unique pure strategy

Nash equilibrium in situations of low complexity (few games and easy access

to feedback), but not in situations with higher complexity (many games or

difficult access to feedback). Huck et al. (2010) show that participants have

more difficulty to form correct beliefs as the environment gets more complex.

In decision problems Huck and Weizsäcker (1999) find that players are more

likely to deviate from expected value maximization when choosing between a

pair of lotteries if the task is more complex, as measured by the number of

possible outcomes (see also Rabin and Weizsäcker, 2009).

The chapter is organized as follows. In section 2.2 we present the experimen-

tal design. Section 2.3 lists the conjectures that are tested in section 2.4, where

we show how reducing complexity reduces behavioural variation and increases

the explanatory power of Nash equilibrium. Preference-based explanations and
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heterogeneity in preferences are discussed in section 2.5 and conclusions are

drawn in section 2.7. The Appendix contains additional tables and figures as

well as the experimental instructions.

2.2 Experimental Design

Our experimental design aims to understand whether bounded rationality could

be the reason for the large behavioural variation and low explanatory power of

Nash equilibrium in Tullock contests. In order to reach a Nash equilibrium,

players need to do two things: (i) they need to be able to form correct beliefs

and (ii) they need to be able to formulate best responses (to whatever beliefs

they hold). Participants could learn to form correct beliefs or formulate best

responses in a number of ways. Under some learning models they might even

learn to play a Nash equilibrium without explicitly forming beliefs at all (e.g.

reinforcement learning). How exactly participants do so is of secondary concern

for us in this study. The question we ask is whether if we make it “easy enough”

to formulate beliefs and best responses behavioural variation in this game will

be (substantially) reduced and the explanatory power of Nash equilibrium in-

creased. In a 2�2 factorial design we hence varied complexity along these two

dimensions. Table 2.1 summarizes this treatment structure.

Treatment dD is our benchmark treatment and implements the standard

contest as typically studied in the experimental literature. In treatment eD,

we make it easy to formulate best responses, but keep the difficulty of forming

correct beliefs. This reverses in treatment dT, where we keep the difficulty

of formulating best responses and make it simple, in fact trivial, to formulate

correct beliefs. In treatment eT, both sources of complexity are eliminated.

Next, we describe these treatments in detail.

Table 2.1: Experimental design. Numbers in brackets indicate the total number of partici-
pants in each treatment. Participants in treatments dD and eD were allocated to matching
groups of 6 participants, thus there are 9 independent observations in each of these treat-
ments. In treatments eT and dT each participant is an independent observation. In eT�h
24 participants were “dummy” players, so we use the choices of the remaining 24 players
in our analysis.

Belief Formation
Best Response Formulation Difficult Trivial
Difficult dD (54) dT (44)
Easy eD (54) eT (44); eT�h (48)
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Treatment dD. In treatment dD, subjects participated in the standard Tul-

lock contest. In our Tullock contest, two players compete for a commonly known

prize of 16 Experimental Currency Units (ECU). In every round, participants

received an endowment of 16 ECU. Participants could then invest an amount

from this endowment, i.e. an amount from the action set Ai � t1, 2, ..., 16u
with typical element ai (i � 1, 2). Players’ investments are sunk costs and the

sets of feasible monetary payoffs are given by Πi � t16� ai, 16� 16� aiu. The

contest success function that denotes the probability that player i receives the

prize and, hence, the payoff of p32 � aiq ECU is given by ρipa1, a2q � ai
a1�a2

.

The experimental instructions can be found in Appendix 2.B.

The unique (risk neutral) Nash equilibrium in our contest game is given

by pa�1 , a
�
2 q � p4, 4q. This is also the unique strategy profile surviving iterated

elimination of strictly dominated strategies. All choices ai ¡ 4 are strictly

dominated by ai � 4 under the standard assumptions. Put differently, there

are no beliefs that can support choices above the Nash choice of 4 for risk neutral

expected utility maximizers. Even allowing for moderate degrees of risk aversion

or risk seeking does not affect this property. To demonstrate this, Figure 2.6

illustrates the best response correspondence for a risk averse, risk neutral and

risk seeking CRRA agent. These best response functions are very similar to one

another and choices exceeding 4 are not rationalizable for any of these types.

Therefore, we will follow the vast majority of the literature and use the risk

neutral Nash equilibrium as a benchmark. We will be very careful, though, to

account for heterogeneity in risk and social preferences when interpreting our

results and we will investigate this issue more deeply in section 2.5.

Treatment eD. In treatment eD we wanted to make it easier for participants

to formulate best responses (compared to dD). An obvious treatment manip-

ulation would be to simply compute the best response for them. Remember,

though, that we want to allow for the possibility that participants may have

heterogeneous preferences. If we want to remain agnostic about their prefer-

ences, we cannot compute best responses “for them”. In the light of ample

evidence that people have difficulty to reduce uncertainty (e.g. Kahneman and

Tversky, 1972, Peters et al., 2007), one treatment variation that should make

it easier to formulate best responses is to eliminate random variables.4 One

way of doing so is to share the prize between both players according to their

individual investment shares in total investment. Hence, instead of receiving

p32 � aiq ECU with probability ai
a1�a2

and p16 � aiq ECU with complementary

4In section 2.5.1, we analyze the possibility that this treatment variation interacts with risk pref-
erences to generate differential results.
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probability (as in dD), subjects received as the monetary round payment the

hypothetical expected value:

Πi �
ai

a1 � a2

p32� aiq � p1�
ai

a1 � a2

qp16� aiq � 16� ai �
16ai
a1 � a2

ECU.

In this treatment - given correct beliefs - formulating best responses should be

easier, because participants do not have to reduce uncertainty. It is still difficult

in this treatment, though, to form correct beliefs.

Treatment dT. Making it simpler (or even trivial) to form correct beliefs

requires more elaborate design interventions. If one would like to maintain the

simultaneous choice setting (which is desirable because of treatment compar-

isons), the only way is to let participants play against computers or against

human players who are so restricted in their choice of strategy that they could

almost be replaced by computers. In the experiment we did both. To keep

the structure identical, all treatments (including the benchmark treatment dD)

were divided into 4 successive blocks and each block was composed of 10 rounds

of play.

Specifically, strategic uncertainty was removed by matching participants to

computers who played a fixed strategy in every block.5 Players were informed

about the computer’s choices ex ante and, hence, should hold deterministic and,

moreover, correct beliefs about the opponent’s play. The strategy adopted by

the computer was held constant within each block of ten rounds and changed

from one block to the other, thus, each player faced four different strategies.

The first type of players faced a computer that played the sequence of strategies

t1, 14, 11, 8u, the second type faced strategies t5, 10, 3, 16u the third t9, 6, 15, 4u
and the fourth t13, 2, 7, 12u. Each sequence was allocated at random to the

same number of players, hence there is an equal number of observations for

each computer choice in t1, ..., 16u. Sequences were selected such that each par-

ticipant faced the same average level of computer investment and some “high”

as well as “low” investment levels.

Treatment eT. In treatment eT both sources of complexity were eliminated

using the same procedures as adopted for treatments dT and eD, respectively.

Since players were ex ante informed about the investment choice of the com-

puter, they should hold correct beliefs in eT (just as in dT). The question is

5A similar procedure was used e.g. by Johnson et al. (2002), who match players to “robots” in
three-round bargaining game. Robots were playing according to the subgame-perfect Nash equilibrium
prediction and induced human players to choose strategies that are closer to the theoretical prediction.
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whether - given correct beliefs - participants engage in best response behaviour.

This should be easiest in eT where both sources of complexity are eliminated.

Treatment eT-h. Treatment eT-h coincides with treatment eT except that

computers were replaced by human players. At the start of each ten-round

block these human players were restricted to choosing strategies that prescribe

the same action in each round of the block. Each player was randomly assigned

a set from which this action could be chosen, where the four possible sets were

t1, 14, 11, 8u, t5, 10, 3, 16u, t9, 6, 15, 4u or t13, 2, 7, 12u. Each action had to be

chosen at least once, therefore players were essentially choosing the order in

which strategies are played, while in eT the computer played them in a fixed

sequence not known to the human participants. In eT-h choices have payoff

consequences to the other participant, contrary to the eT treatment, therefore

treatment eT-h serves as a robustness check to understand whether replacing

human subjects by computers affects our treatment comparison.

Other Details. To improve the understanding of the design and incentives,

participants were facing an alternating pattern of 5 non-incentivized and 5

incentivized rounds. After all 40 rounds were completed, players took an incen-

tivized numeracy test that measured the ability to understand and manipulate

probabilities.6 At the end of the experiment, one incentivized round was ran-

domly chosen from each block and participants received the earnings from the

chosen rounds as well as the payment for correct answers in the questionnaire.

The experiment was conducted in March and September 2012 using z-Tree

(Fischbacher, 2007) and ORSEE (Greiner, 2015) at the BEElab at Maastricht

University. A total of 244 students participated in the experiment. The average

duration of the experiment was 60 minutes and participants on average earned

15.15 euros.

2.3 Conjectures

Our first conjecture is that behavioral variation is lower when complexity is

reduced by making it easier to formulate best responses and form correct beliefs.

Conjecture 1. Behavioural variation is highest in dD and lowest in eT.

6Questions for the numeracy test were taken from Peters et al. (2007). From the 15 questions in
the original test we removed 7 questions that were found too simple (correctly answered by at least
80% of the population with higher education). We did so to increase incentives of answering the more
complicated questions and to enable better differentiation based on performance. Subject were paid
1 ECU (0.25 euro) for a correct answer for each of the first 7 questions, and 2 ECU (=0.5 euro) for a
correct answer to the final question that was the most difficult one.
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We introduce our measure of behavioural variation further below (section

2.4). Before we do that, we formulate conjectures about the explanatory power

of NE in our four treatments. Since we induce non-Nash choices by comput-

erized players in the treatments with trivial belief formation, dT and eT, the

percentage of choices which are Nash is not a reasonable measure. Instead we

decompose Nash behaviour into the two components that motivated our design:

(i) correct beliefs and (ii) best response behaviour. In the following we explain

how our treatment variations impact each of these components.

We start by looking at the effect of making it easier to formulate best re-

sponse. There is a large body of evidence that people have difficulty in com-

prehending probabilistic statements and in making decisions in probabilistic

environments (Kahneman and Tversky, 1972). If NE has explanatory power,

then we would expect that removing this uncertainty facilitates best response

behaviour. As a consequence, we expect a larger share of choices to be consistent

with best response behaviour to some beliefs when best response formulation is

easy, i.e. in eD compared to dD and in eT compared to dT. What does it mean

to be “consistent with best response behaviour”? It means that choices are ra-

tionalizable, i.e. that there exists a belief that would justify the player’s choice.

Since dominated choices are not consistent with best response behaviour, we

expect to see less of these choices when best response formulation is easy, as in

eD compared to dD and in eT compared to dT. Of course, what constitutes

a dominated strategy depends on the agent’s preferences. We follow the vast

majority of the literature and assume a risk neutral expected utility maximizer

as a benchmark, but we carefully look at risk and social preferences in section

2.5. There, we demonstrate that our results obtain for very large classes of

preferences.

Conjecture 2. A larger share of choices is undominated with easier best re-

sponse formulation, i.e. in eD compared to dD and in eT compared to dT.

Furthermore, if the difficulty in dealing with probabilistic statements is the

main reason participants make suboptimal decisions in non-deterministic en-

vironments, then participants that are better at understanding probabilistic

environments should do “better”. In other words subjects with higher scores

in the numeracy test should choose strategies consistent with best response be-

haviour more often than others (in treatments eD and eT). We address this

issue in Section 2.4.3, where we present evidence from our questionnaire.

Since belief formation is trivial in treatments dT and eT, participants should

have “correct” beliefs in these treatments. As a consequence, if NE has explana-

tory power, then we expect that the best response to the opponent’s behaviour
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is chosen more often when belief formation is trivial, that is in dT compared

to dD and in eT compared to eD.

Conjecture 3. A larger share of choices is a best response to the opponent’s

behaviour with trivial belief formation, i.e. in dT compared to dD and in

eT compared to eD.

2.4 Results: Reducing Complexity

In this section, we present our main results. We start by evaluating Con-

jecture 1 on behavioural variation and compare it across treatments (section

2.4.1). Subsequently, we focus on the explanatory power of Nash equilibrium

regarding its two components, best response behaviour and correct beliefs, and

evaluate Conjectures 2 and 3 (section 2.4.2). Unless explicitly stated otherwise,

throughout the chapter we analyze data generated in the incentivized rounds

during the second half of the experiment. The reason is that we want to focus

on mature behaviour and eliminate behavioural variation that would disappear

after some learning has occurred.

2.4.1 Behavioural Variation

Figure 2.2 is the analogue of Figure 2.1 and compares treatments dD and eT in

terms of behavioural variation. The figure plots the empirical cumulative dis-

tribution functions (CDF) of choices ai divided by the equilibrium prediction

along with the theoretically predicted CDF. Theoretically, hence, all the ob-

servations should yield a degenerate CDF where all the CDF mass cumulates

at one, because choices should equal the equilibrium prediction in each period.

What is the equilibrium prediction for both treatments? As discussed before,

in treatment dD (i) the risk neutral Nash equilibrium prescribes an investment

of a�i � 4 ECU and (ii) the best response of a risk neutral agent to the empir-

ical distribution of choices in dD is also a�i � 4. In treatment eT, however,

the theoretical prediction is different. Since the computer’s investment level

is known before making a choice, the prediction is simply the best response to

that predetermined investment level. The resulting best responses range from 1

to 4 depending on the computer’s choice, noting that all choices exceeding 4

are strictly dominated.

Figure 2.2 shows that our benchmark treatment dD produces results for the

Tullock contest that are “standard” in the sense of high behavioural variation

and choices completely disconnected from the theoretical (Nash) prediction.
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Figure 2.2: Cumulative distributions of ratio variable, where investment choices are divided
by equilibrium prediction, in theory and treatments dD as well as eT.

There does not seem to be more CDF mass at 1, where the actual choice equals

the theory prediction, than elsewhere. Note also that all the CDF mass to

the right of 1 stems from dominated choices for a risk neutral and risk averse

(see section 2.5.1) agents. In treatment eT, on the other hand, the theoretical

prediction clearly has something to say about the data with most CDF mass

concentrated at 1.

We use two measures previously used in the literature to obtain more con-

ventional measures of behavioural variation. The first measure is the stan-

dard deviation of choices. The second measure is entropy, which evaluates the

stochastic variation of a random variable that can assume a finite set of values

(Shannon, 1948). Entropy has been used, e.g. by Bednar et al. (2011), to eval-

uate behavioural variation in normal-form games. While standard deviation

is a very common measure, the advantage of using entropy is that it yields a

measure of the average unpredictability of a random variable that captures the

amount of information needed to describe a distribution. If a is the random

variable of investments and pi � P pa � aiq is its probability density function

for all possible strategies ai � 1, 2, . . . , 16, entropy is computed as:

H � �
¸

i�1,2,...,16

pi log2ppiq

It is common to use a logarithm to base 2, so that entropy can be interpreted

as the total number of bits needed to describe the data. For our strategy

space with 16 possible choices, the entropy measure can take values from 0 (if

a single strategy is always chosen) to 4 (if all strategies are chosen with equal
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frequency).7

To compare behavioural variation across treatments, we compute our mea-

sures (entropy and standard deviation) by treatment conditional on the strategy

chosen by the opponent. Aggregate entropy in each treatment is then computed

as the weighted average of the conditional entropy levels and the weights are

determined by the frequency with which each of these strategies are chosen

in the standard contest (dD). Conditioning on opponents’ strategies ensures

that the behavioural variation is zero in all treatments if all participants al-

ways choose best responses to correct beliefs. Without this conditioning, there

would be artificial variation in treatments dT and eT, which is merely due to

the computer changing strategies between blocks, which in some cases changes

the best response.8

Table 2.2: Behavioral variation across treatments. Data from incentivized rounds in the the
second half of the experiment.

dD eD dT eT
Entropy 3.22 2.79 2.45 1.50
Std. dev. 3.28 2.56 3.15 1.16

Both measures are summarized in Table 2.2. Both entropy and standard

deviation are highest in the standard contest (dD) and lowest when complexity

is lowest (eT). The two measures disagree on ranking the intermediate treat-

ments, where either best response formulation or belief formation is simplified

(but not both): entropy is higher in eD than in dT, but standard deviation

ranks them the other way round. Table 2.14 in Appendix 2.A.6 shows that

both within and between subject variability contribute to the high amount of

behavioural variability observed in dD and that eliminating uncertainty (as in

eT) reduces both types of variability.

We conduct Wilcoxon ranksum (Mann-Whitney) tests to check for the sta-

tistical significance of these differences. To account for the dependency of ob-

servations within matching groups we compute entropy (standard deviation)

separately for each matching group and then compare the distribution of the

results using two-sided ranksum tests. Since in treatments dT and eT each

participant is an independent observation, we can either compare matching

group averages with individual levels or form artificial matching groups in the

dD and eD treatments and then compare matching groups. We do both and re-

7To accommodate the case that a strategy is never played, we follow the literature and assume
that 0 � logp0q � 0.

8Despite this fact - even if entropy and standard deviation are computed by simply pooling all the
observations in a treatment, treatments are ranked similarly. The only exception would be treatment
dT which in that case exhibits larger behavioural variation than dD.
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port the lower/higher p-value, whichever is more relevant. For entropy, we find

that the difference between dD and eT is marginally significant even when the

comparison is performed on a matching group level (p   0.0544). Hence, reduc-

ing both dimensions of complexity significantly reduces behavioural variation.

The difference between eD and eT is also significant (p   0.0210), indicating

that when best response formulation is easy, making belief formation trivial

significantly reduces behavioural variation.

In terms of the standard deviation we again find significant differences be-

tween dD and eT (p   0.0005) and dT and eT (p   0.0047). Overall we find

clear support for Conjecture 1 and conclude that reducing complexity along the

two dimensions in our design does reduce behavioural variation.

Result 1 Behavioral variation is lowest in eT, where best response formulation

is easy and belief formation trivial, among all treatments and it is lower

in eD and dT, where one dimension of complexity is reduced, compared

to dD.

2.4.2 Explanatory Power of Nash Equilibrium

Now that we have established that making best response formulation easy and

belief formation trivial reduces behavioral variation substantially, we examine

whether the explanatory power of Nash equilibrium responds accordingly. We

evaluate this conjecture in detail in this section. We follow the vast major-

ity of the literature and focus on the benchmark prediction for risk neutral

agents. In Sections 2.5.1 and 2.5.2 we relax this assumption and explore differ-

ent preference specifications, in particular different risk preferences and social

preferences.

Table 2.3: Indicators measuring the explanatory power of Nash equilibrium across treat-
ments. Data from the incentivized rounds in the second half of the experiment.

dD eD dT eT
P pa � NEq 7.04% 13.33% - -
P pa � BRq 7.04% 12.04% 22.50% 65.23%
P p|a�NE| ¤ 1q 25.74% 32.78% - -
P p|a�BR| ¤ 1q 26.30% 31.30% 47.95% 83.64%
P pa ¡ 4q 60.19% 62.78% 51.36% 16.14%

Table 2.3 shows summary statistics on different measures of the explanatory

power of Nash equilibrium. Let us first focus on the benchmark treatment dD.

In this treatment, we observe only 7 percent of choices equal to the Nash predic-

tion. To get a sense of how little this is, note that a player choosing uniformly
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at random between the possible investment levels ai P t1, ..., 16u would play

the Nash choice 6.25 percent of the time. The explanatory power of NE is not

much improved when we look at the percentage of choices that are “close” to

the Nash choices (ai P t3, 4, 5u). This percentage is barely above 25 percent.

Note again that a random player would hit these numbers in 18.75 percent of

the cases. Moreover, approximately 60 percent of all choices in dD are strictly

dominated (a ¡ 4). The top-left panel of Figure 2.3 illustrates these results,

where the dashed line separates dominated (a ¡ 4) from undominated choices

(a ¤ 4). Our results in the benchmark treatment dD hence display the low ex-

planatory power of NE typically found in Tullock contest data (Abbink et al.,

2010, Sheremeta, 2013). We now study how it changes when we reduce the

difficulty of (i) best response formulation and (ii) belief formation.
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Figure 2.3: Distribution of investment choices by treatment in the incentivized rounds of
the second half of the experiment (rounds 26-30 and 36-40). Vertical dashed lines separate
undominated (¤ 4) from dominated choices (¡ 4).

“Easy best responses” (Conjecture 2) Let us first see whether and how

the explanatory power of NE is increased by making it easier to formulate best

responses. As outlined in section 2.3, we expect participants to choose strate-

gies that are consistent with best responses to any belief, i.e. undominated

strategies, more often when best response formulation is easier, i.e. in eD com-

pared to dD and in eT compared to dT. For risk neutral (and moderately risk
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averse) agents, investment levels below or equal 4 are undominated. Table 2.3

shows the percentage of dominated choices by treatment. If belief formation

is difficult, then making best response formulation easy does not improve the

explanatory power of NE, as the comparison of treatments dD and eD shows.

In fact the percentage of strictly dominated strategies is even slightly higher

under eD compared to dD, though this difference is not statistically significant

(see Table 2.9 in Appendix 2.A.1). Overall, the explanatory power of Nash

equilibrium is very low in both treatments. This is also illustrated by Figure

2.3 (top-left vs bottom-left panel).
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Figure 2.4: Theoretical best response line and the empirical distribution of investments,
conditional on the strategy played by the computer. Box plots represent the medians,
differences between 25th and 75th percentiles and lower and upper adjacent values.

If belief formation is trivial, on the other hand, behavior in a treatment in

which best responding is easier is closer to theoretical predictions. Comparing

treatments dT and eT, we find that easier best response formulation substan-

tially improves the explanatory power (Figure 2.3, top-right vs bottom-right

panel). The frequency of strictly dominated choices decreases from 51.36% in

dT to 16.14% in eT (Table 2.3). This difference is highly statistically signifi-

cant (p   0.0001) according to a simple logit regression reported in Table 2.9

in Appendix 2.A.1. Hence making it easier for participants to formulate best

responses reduces the frequency of dominated choices only if it is trivial to form

correct beliefs.

Figure 2.4 illustrates this effect in more detail. The figure plots the quartiles
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of responses to each of the strategies chosen by the computer. The difference be-

tween the first and the third quartiles is much larger in treatment dT, especially

for large investment values chosen by the computer. In treatment eT median

investments track the best response function well.9 Table 2.10 in Appendix 2.A

shows that differences between treatments do not disappear with learning. The

difference between dD and eD is insignificant in every block except for the

first one where it is marginally significant, while the difference between dT and

eT is highly significant throughout the experiment.

To sum up, there is a complementary effect. Making it easier to formulate

best responses reduces the frequency of dominated choices if it is trivial to form

correct beliefs.

Result 2 Making best response formulation easy, increases the explanatory

power of NE if belief formation is trivial. Dominated actions are chosen

less frequently in eT compared to dT.

“Trivial Beliefs” (Conjecture 3) If beliefs are correct, then the explana-

tory power of Nash equilibrium is reflected in the share of choices which are

best responses to the opponent’s behaviour. Recall, that in the treatments with

trivial belief formation the opponent’s behaviour is announced, giving rise to

correct beliefs. For comparison to the treatments with difficult belief formation

we report the frequency of choices that are best response to actual opponents’

behaviour in the latter.10

Consistently with Conjecture 3, Table 2.3 shows that the share of best re-

sponses increases as belief formation becomes trivial irrespective of whether

best response formulation is difficult or easy. While less than 10% of partici-

pants best-respond to their opponent’s choices in dD, this number more than

doubles in dT and reaches 22.50%. Table 2.9 in Appendix 2.A.1 shows that

this treatment difference is significant (p   0.0001). The effect is even stronger

if we compare eD and eT: the share of choices which are best responses to the

opponent’s behaviour increases from 12% to more than 65%, a difference that is

statistically significant (p   0.0001, Table 2.9). 83.64% of choices in eT deviate

from the best response by 1 ECU or less.11

9Additional evidence for this effect can be found in Table 2.11 in Appendix 2.A that compares the
median investments for each choice of the opponent across treatments dT and eT. It can be seen that
the median investment level tends to be closer to the best response in eT and that the treatment
difference is particularly large for situations where the opponent chooses a very high investment level
(5 and above)

10 Results are qualitatively the same if we consider best responses to population averages, instead.
11eT is also the treatment where most learning is observed (see Table 2.10 in Appendix 2.A). The

change in average equilibrium deviations decreases by 63% from the first to the fourth block.



Results: Reducing Complexity 21

Result 3 Easier belief formation increases the explanatory power of NE: more

choices are best responses to opponent’s behaviour in eT compared to

eD and in dT compared to dD.

It should be noted that the difference between eT and eD is larger than

the difference between dT and dD, i.e. making belief formation trivial in-

creases the explanatory power of NE more if best response formation is easy

(χ2 : p   0.0023, see Appendix 2.A.1). Also recall that making best response

formation easy is effective only if belief formation is trivial (no significant differ-

ence between eD and dD). Hence both sources of complexity compound to de-

crease the explanatory power of NE. Removing both sources of complexity leads

to very high consistency with best response behavior and a consequently high

explanatory power of Nash equilibrium. These results suggest that bounded

rationality is a key force behind the typically low explanatory power of NE in

Tullock contests.

2.4.3 Cognitive Abilities and Equilibrium Deviations

In the previous subsection we have established that while behavioural varia-

tion is huge in dD and significantly reduced in eT, there remains a substantial

amount of behavioural variation in dT. This shows that even if belief forma-

tion is trivial, participants still find it difficult to formulate best responses with

probabilistic prize allocation. Since in eT (where prize allocation is determinis-

tic) this variation disappears, the difficulty in forming best responses seems to

be related to (some) participants’ difficulty in dealing with probabilistic choice

situations.

In this subsection we evaluate this hypothesis using data from our post-play

questionnaire on cognitive ability and risk numeracy.12 If complexity is indeed

one of the main reasons why participants’ choices are not consistent with best

response behaviour in the experiment, then one might conjecture that those

with better scores in a risk numeracy test should have less difficulty in dealing

with this complexity and hence should be closer to best response behaviour.

As argued above, we expect risk numeracy to matter particularly in treat-

ment dT, where belief formation is trivial, but best response formation difficult.

It is not clear why cognitive ability (as measured in numeracy tests) should help

to form correct beliefs, i.e. explain variation in dD and eD. In treatment eT,

on the other hand, where both best response formation and belief formation

are easy we have seen that behavioural variation is low. We focus hence on

12The entire questionnaire, as well as summary statistics on answers can be found in Appendix
2.B.3.
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dT. Figure 2.5 plots the score in the numeracy test (higher score means higher

numeracy) against the average distance between a participant’s choice and the

theoretical prediction (panel a) and the computer strategy (panel b).
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Figure 2.5: Relationship between the performance in a numeracy test and absolute difference
between investments and computer’s strategy/best response in dT, averaged by subjects.
Incentivized rounds from the second half of the experiment.

Figure 2.5 shows data points as well as predicted values from an OLS re-

gression and the associated 95 percent confidence interval. It can be seen that

participants with higher scores in the numeracy test on average choose invest-

ments that are closer to the theoretical best-response. They are also less prone

to imitating the computer strategy, as Figure 2.5(b) suggests, but the statistical

significance here is somewhat lower. The underlying regression results can be

found in table 2.15, in Appendix 2.A.7. Both results provide further support

to our conjecture that the difficulty of participants to make decisions in un-

certain environments is the main cause for the low explanatory power of Nash

equilibrium in the Tullock contest.

Result 4 In treatment dT participants who do better in the numeracy test

best respond more often and imitate less often than those who do worse.

2.5 Preference Based Explanations

In this section we first ask whether our treatment comparisons and conclusions

remain valid under alternative assumptions on preferences. We first look at

risk preferences (section 2.5.1) and then at social preferences (section 2.5.2).

Afterwards, in section 2.5.3 we ask whether heterogeneity in preferences can

explain the large behavioural variation observed in the standard contest.
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2.5.1 Risk Preferences

In this subsection we show that our results and interpretation are robust to

considering different risk preferences. First, note that results on behavioural

variation are independent of our participant’s preferences. In this section, we

hence focus on our results from section 2.4.2 (on the explanatory power of Nash

equilibrium) and show that they are robust when different risk preferences are

considered.

The first question to ask is how risk aversion (or risk seeking behaviour)

affects the theoretical predictions in the standard contest. Figure 2.6 shows the

best response function for a risk seeking (parameter r � �0.5), risk neutral

(r � 0) and risk averse (r � 0.5) CRRA agent. The figure shows that the best

response to choices below or equal to four are almost identical for these three

types. It further shows that all choices above 4 are never a best response for any

of these types. In addition, the more risk averse an agent is, the more the best

response function shifts downwards, i.e. the lower his best response is. Hence

choices above the Nash level of 4 cannot be explained by risk aversion (see also

Hillman and Katz, 1984, or Abbink et al., 2010). Table 2.4 shows that the

percentage of choices consistent with best response behaviour are much higher

in eT compared to all other treatments also for risk averse and risk loving agents

and they remain very low (barely above uniformly random) in treatment dD.
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Table 2.4: Percentage of choices that are best responses to the opponent’s choice (dT and
eT) or the empirical distribution of choices (dD and eD) for risk averse (CRRA with
r � 0.5)/risk neutral/risk seeking (CRRA with r � �0.5) players.

Treatment dD eD dT eT

Risk neutrality 7.04% 12.04% 22.50% 65.23%
Risk aversion (r � 0.5) 7.41% 10.74% 27.50% 48.64%
Risk seeking (r � �0.5) 7.59% 13.52% 11.14% 40.68%

Further, risk aversion and in particular also risk seeking preferences are even

less consistent with evidence in eT, suggesting that risk aversion did not play

a major role in the experiment. It has also been shown that loss aversion

or S-shape probability weighting cannot explain such choices (Baharad and

Nitzan, 2008). This also means that the results shown in Table 2.3 would

remain unchanged if moderately risk averse or risk loving CRRA agents are

considered.

A different question is whether, in the presence of risk averse agents, our

treatment comparisons are distorted by making prize allocation deterministic,

as this reduces risk for our participants. In particular a risk averse CRRA

agent might respond to the risk associated with probabilistic prize allocation in

treatments dD and dT, but behave as if he was risk neutral in eT, because all

risk has been eliminated there. The preceding discussion suggests that - given

moderate degrees of risk aversion - this should not make too much of a difference.

In particular, Figure 2.6 shows that under CRRA utility risk averse participants

invest more than risk neutral participants if the opponent invests very little

and less than risk neutral participants if the opponent invests a lot. Since in

treatments dT and eT, participants know their opponents’ investments, we

can use this to test for such distortions. If risk aversion plays a significant role

in explaining the differences between these treatments, then we should expect

that investments are higher in dT compared to eT for low investment choices

of the opponent and lower for high investment choices of the opponent. Figure

2.4 shows that this is not the case. Mostly behavioural variation is higher

under dT compared to eT, but if at all investments in dT are lower for low

investments and higher for high investments of the opponent compared to eT.

Hence we can rule out this type of distortion of our treatment comparisons.

We conclude that the results summarized in Table 2.3 as well as treatment

rankings are robust to considering moderate degrees of risk aversion or risk

seeking behaviour.
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2.5.2 Social Preferences

Similarly, we ask whether our conclusions drawn so far, and in particular our

treatment comparisons, are valid if our participants had social preferences, such

as inequity aversion, joy of winning or reciprocity. For example, some partici-

pants might have preferences over the outcomes of other participants in treat-

ments dD and eD, but not in treatments dT and eT, where choices have no

payoff consequences for other participants. To address this potential concern

we ran an additional treatment (eT-h) that coincides with eT, but where com-

puters are replaced by human opponents. We were interested in seeing whether

this change reverses any of our treatment rankings and therefore affects any of

the conclusions we drew.

Table 2.5: Behavioral variation across treatments. Data from incentivized rounds in the the
second half of the experiment.

dD eD dT eT-h
Entropy 3.22 2.79 2.45 1.13
sd 3.28 2.56 3.15 0.91

Table 2.5 corresponds to Table 2.2, but treatment eT has been replaced by

treatment eT-h. It can be seen that the conclusions are the same. Irrespective

of the measure (entropy or standard deviation) behavioural variation is much

lower in eT-h compared to any of the other treatments.

Table 2.6: Indicators measuring the explanatory power of Nash equilibrium across treat-
ments. Data from the incentivized rounds in the the second half of the experiment.

dD eD dT eT-h
P px � NEq 7.04% 13.33% - -
P px � BRq 7.04% 12.04% 22.50% 50.42%
P p|x�NE| ¤ 1q 25.74% 32.78% - -
P p|x�BR| ¤ 1q 26.30% 31.30% 47.95% 74.58%
P px ¡ 4q 60.19% 62.78% 51.36% 23.33%

Table 2.6 corresponds to Table 2.3, but again treatment eT has been re-

placed by treatment eT-h. Again our conclusions are robust. The share of

choices corresponding to best response behaviour or being “close” to best re-

sponse behaviour is much larger in eT-h compared to any of the other treat-

ments. Hence, while some participants may well have social preferences we con-

clude that (i) homogeneous social preferences cannot explain the large (within

subject) variation in behaviour we observe and (ii) our treatment rankings and

conclusions are not affected by allowing for this possibility. In the next subsec-

tion we ask whether heterogeneity in social or other preferences can explain the

large behavioural variation we observe.
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2.5.3 Heterogeneity

In this subsection we report the results of simulations based on a number of

different populations with heterogeneous preferences. Since in our experiment

(treatments dD and eD) we had matching groups of 6 players, we form arbi-

trary populations consisting of 6 players with different preferences. The pref-

erence types we consider are the following

• τ1: risk neutral expected utility maximizers.

• τ2: risk averse CRRA agents with CRRA parameter r � 0.5 (see Appendix

2.A)

• τ3: risk seeking CRRA agents with CRRA parameter r � �0.5 (see Ap-

pendix 2.A)

• τ4: social preferences: Charness-Rabin pρ, σq � p0.4, 0q (Charness and

Rabin, 2002)

• τ5: social preferences: Charness-Rabin pρ, σq � p0.8, 0.1q (Charness and

Rabin, 2002)

• τ6: joy of winning preferences: additional utility of 8 for winning

(Sheremeta, 2013)

Types τ1 � τ3 vary risk preferences. Types τ4 � τ5 vary social preferences as

in Charness and Rabin (2002). Type τ4 reflects the parameters estimated from

their experiments and type τ5 has the same parameters but multiplied by two.

Type τ6 receives an additional utility of 8 if s/he wins the contest. These type

of “joy of winning” preferences have received a lot of attention in the contest

literature to explain the so-called “overbidding phenomenon” (see Sheremeta,

2013). An additional utility of 8 reflects a 50% increase in the perceived value

of the prize.

We simulated different population compositions of these types for 40 periods.

Before the first period we randomly matched agents into pairs. In period 1

actions were drawn at random from t1, ..., 16u. In all subsequent periods agents

played a myopic best response to the action of their previous match. To compute

the myopic best response for the Charness-Rabin types τ4 and τ5 we assume

that the prize is shared proportionally as in treatment eD. All simulations were

run 100 times to account for path dependence caused by random matching and

initial actions. We report the minimal, maximal, mean and median entropy

across these 100 runs.
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Table 2.7: Minimal, maximal, median and mean entropy across 100 runs of simulated pop-
ulations. Entropy in treatments dD and eD was calculated separately for each matching
group using incentivized rounds in second half of experiment.

composition pτ1, ..., τ6q min max median mean
p6, 0, 0, 0, 0, 0q 0.217 0.530 0.391 0.379
p0, 6, 0, 0, 0, 0q 0.255 0.538 0.430 0.425
p0, 0, 6, 0, 0, 0q 0.147 0.429 0.321 0.315
p0, 0, 0, 6, 0, 0q 0.806 2.104 1.624 1.656
p0, 0, 0, 0, 6, 0q 0.754 2.076 1.613 1.584
p0, 0, 0, 0, 0, 6q 0.213 0.426 0.333 0.328
p0, 2, 0, 2, 2, 0q 0.320 0.974 0.710 0.694
p1, 1, 1, 1, 1, 1q 1.158 1.649 1.415 1.409
p1, 2, 0, 1, 1, 1q 1.339 1.695 1.550 1.543
p1, 2, 0, 2, 1, 0q 0.327 0.541 0.549 0.758
p2, 0, 0, 2, 1, 1q 1.099 1.587 1.330 1.344
p2, 0, 0, 2, 2, 0q 0.406 0.952 0.690 0.683
p2, 1, 1, 1, 1, 0q 0.252 0.628 0.444 0.447
p2, 2, 0, 1, 1, 0q 0.262 0.638 0.464 0.464
p3, 0, 0, 2, 1, 0q 0.247 0.790 0.547 0.536
p3, 0, 0, 3, 0, 0q 0.192 0.801 0.522 0.522
p3, 1, 0, 1, 1, 0q 0.264 0.652 0.473 0.466
p3, 2, 0, 1, 0, 0q 0.255 0.597 0.425 0.423
p3, 3, 0, 0, 0, 0q 0.186 0.525 0.412 0.405
dD 2.284 3.441 2.860 2.941
eD 2.014 3.165 2.568 2.568

Table 2.7 shows the results of our simulations. The highest levels of en-

tropy are reached in homogeneous populations of agents with Charness-Rabin

preferences because such preferences lead to multiple equilibria and therefore

matching groups converge to different equilibria. However, even in these popu-

lations the average levels of entropy observed (1.656 or 1.584, respectively) fall

well short of the high levels of entropy observed in treatments dD and eD. We

conclude that heterogeneity in preferences cannot explain the high behavioural

variation observed in treatments dD and eD.

2.6 Strategic Uncertainty and Stability

In treatments dT and eT players face no strategic uncertainty in the current

round, but they also know that the computer will keep playing the same action

in all remaining rounds of a block. This stability of opponent’s choices pro-

vides players with additional learning opportunities that may further decrease

the gap between the theoretical predictions and choices. To disentangle the

effects of strategic uncertainty and stability of choices we ran two additional

treatments in which players faced no strategic uncertainty in the current round,

but did face uncertainty about opponent’s future choices. We denote these two
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treatments by dT-var and eT-var (“var” stands for “variable”). In these treat-

ments the computer was programmed to play the history of choices observed

by participants in dD, therefore each participant in dT-var and eT-var had a

counterpart in dD who faced the same sequence of choices but was not informed

about opponent’s choice in the current round.13

Table 2.8: Indicators measuring the explanatory power of Nash equilibrium across treat-
ments. Data from the incentivized rounds in the second half of the experiment.

dD eD dT-var eT-var dT eT
P pa � NEq 7.04% 13.33% - - - -
P pa � BRq 7.04% 12.04% 7.59% 25.37% 22.50% 65.23%
P p|a�NE| ¤ 1q 25.74% 32.78% - - - -
P p|a�BR| ¤ 1q 26.30% 31.30% 25.00% 51.85% 47.95% 83.64%
P pa ¡ 4q 60.19% 62.78% 62.96% 47.04% 51.36% 16.14%

The explanatory power of NE is displayed in Table 2.8, which reproduces

Table 2.3 but also includes the two additional treatments. Additional ma-

terials on behavioral variation and best response behavior have been placed

in Appendix 2.A.5 (Table 2.13, Figure 2.8 and Figure 2.9). We find that if

best response formulation is difficult, removing strategic uncertainty without

providing additional opportunities to learn does not increase the explanatory

power of a Nash equilibrium: the tendency to best-respond or choose domi-

nated strategies is almost identical in treatments dT-var and dD (Table 2.8),

while behavioral variation is even slightly higher in dT-var (Table 2.13). The

increase in explanatory power of NE is therefore almost entirely due to the ad-

ditional opportunities to learn. The difference between top-left and bottom-left

panels in Figure 2.8 further shows that stability is particularly helpful in finding

optimal responses to small investment levels.

When best response formulation is easy, both lower strategic uncertainty and

higher stability of choices increase the explanatory power of theoretical predic-

tions. Treatment eT-var has a higher explanatory power than eD (Table 2.8),

but behavioral variation is almost identical (Table 2.13) and even when strate-

gic uncertainty is not present dominated strategies are still chosen almost 50%

of the time. These results are consistent with the finding that the theoretical

best response is rarely chosen in sequential contests (see Fonseca, 2009). The

explanatory power is sufficiently high only if players have additional opportu-

nities to learn, as can be seen from the difference between eT-var and eD in

terms of the explanatory power (Table 2.8) and behavioral variation (Table

2.13). Figure 2.8 demonstrates that the distribution of responses is more con-

1354 participants took part in each of these treatments and all participants were informed that
computer choices were determined by the choices of participants in a previous experiment.
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centrated and the median response is closer to the theoretical prediction when

player have additional opportunities to learn.

Finally, the comparison between eT-var and dT-var shows that making be-

lief formulation easier increases the explanatory power of NE if belief formation

is trivial (Result 2) even when players have no additional learning opportunities.

In eT-var the theoretical best response is chosen more frequently and domi-

nated strategies are chosen less frequently (Table 2.8) and behavioral variation

is lower (Table 2.13 and Figure 2.8).

2.7 Conclusion

We conducted an experiment to understand the reasons behind the large be-

havioural variation and the low explanatory power of Nash equilibrium typically

found in Tullock contests. Across treatments we vary the difficulty of (i) form-

ing correct beliefs and (ii) formulating best responses. In the treatment where

both belief formation and best response formulation are “easy”, behavioural

variation is substantially lower and the explanatory power of Nash equilib-

rium much higher. Via additional treatments and several simulations we show

that heterogeneity in preferences cannot explain the large behavioural variation

found in the standard contest. We conclude that bounded rationality rather

than preference heterogeneity is the reason for the typically large behavioural

variation in experimental Tullock contests.
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Appendix 2

2.A Additional results

2.A.1 Regression on the Explanatory Power of Nash Equilib-
rium

Table 2.9 shows the results of logit regressions where the dependent variable

equals 1 if players make an undominated choice (in columns 1 and 2) or if

players best-respond to the opponent’s choice (in columns 3 and 4) and the

independent variables are the treatment dummies. Results illustrate the statis-

tical significance of the differences seen in Table 2.3. A χ2 test shows that the

difference between dD and dT is smaller than the difference between eD and

eT (p   0.0023).

Table 2.9: Logit regressions for the treatment effects. The first column compares the fre-
quency of undominated choices in treatments dD and eD, the second column compares
dT to eT. The third column compares the share of choices that are best responses to the
opponent’s behaviour in dD and dT and the fourth column compares eD to eT. Standard
errors clustered at matching group level are reported in parentheses.

Prpa ¤ 5q Prpa ¤ 5q Prpa P BRpa�iqq Prpa P BRpa�iqq
Easy best response �0.109 1.702��� No Yes

(0.392) (0.328)
Trivial belief formation No Yes 1.344��� 2.617���

(0.234) (0.416)
Constant -0.413�� -0.054 -2.581��� -1.988���

(0.216) (0.198) (0.130) (0.355)
Observations 1080 880 980 980
Baseline dD dT dD eD
� p   0.05, �� p   0.01, ��� p   0.001

2.A.2 Deviations from Theoretical Predictions across Blocks

Table 2.10 shows how much choices differ from theoretical best responses in

each block, how big the effect of removing either source of uncertainty is and

whether these effects are statistically significant in each block. The statistical

comparison between dD and eD treatments was done using matching groups

as independent observations, while the comparison between dT and eT was

done using individual players as independent observations. If individual players

are used for the first comparison instead, results do not change and p-values

are above 0.1 in every block. Student’s t test yields the similar results, except

that the difference between means of treatments dD and eD is marginally

significant in blocks 2, 3 and 4, with p-values respectively 0.0633, 0.0415 and

0.0186.
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Table 2.10: Comparison of mean equilibrium deviations across treatments in every block.
Two-tailed Mann-Whitney U test p-values of pairwise comparisons are displayed in the
right panel

Treatment dD eD dT eT

First block 3.77 3.04 4.45 1.59
Second block 3.04 2.60 4.41 1.15
Third block 2.86 2.53 3.69 0.74
Fourth block 2.90 2.43 3.23 0.60
Total 3.14 2.65 3.95 1.02

Comparison dD vs eD dT vs eT
First block 0.0094 0.0000
Second block 0.3008 0.0000
Third block 0.1050 0.0000
Fourth block 0.1224 0.0000
Total 0.0014 0.0000

Table 2.11 shows the median investment for each strategy played by the

computer in treatments dT and eT. In treatment dT strong deviations from

best response behaviour are not due to outliers but are a systematic pattern.

The table also shows that in eTmedian choices are largely consistent with best

response behaviour.

Table 2.11: Theoretical best responses and the median actual investments for each strategy
played by the computer.

Strategy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Theoretical BR 3 4 4 4 4 4 4 3 3 3 2 2 1 1 1 1
eT (last 20) 3 4 4 4 4 4 4 3 3 3.5 2 2 1 1 1 1
dT (last 20) 3 5 4 5 5 8 10 8 9 11 1 1 1.5 7 1 1

2.A.3 Determinants of Behaviour

Table 2.12 shows the results of a regression looking at what factors induce a

player to deviate from the theoretical prediction. Among the explanatory vari-

ables we include personal characteristics: the total number of correct answers

in a numeracy test and gender as well as variables on the history of play: op-

ponent’s investment in the previous period (treatments dD and eD), strategy

chosen by the computer (treatments dT and eT), a binary variable indicating

whether the agent won in the previous period and the inverse of the period

variable.

Results of the regression are presented in Table 2.12. Players who did bet-

ter in the numeracy test on average behave more in line with the theoretical

prediction in treatment dT (see section 2.4.3). No significant gender effect is

observed. In all treatments behaviour tends to move towards the equilibrium

over time, as seen from the positive coefficient on the inverse period variable,

but the learning effect is strongest in treatment eT.
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Table 2.12: Random effects estimation, using data from all incentivized rounds. The de-
pendent variable is the absolute difference between the best response prediction and the
investment level. Standard errors are clustered on subject level.

dD eD dT eT
Numeracy score -0.142 -0.133 -0.648��� -0.214�

Female -0.128 -0.582 0.0426 0.112
1/period 6.370� 5.777�� 6.800 7.808���

Won in the previous round -0.103 0.973���

Opponent’s action in the previous round 0.0598� 0.0584��

Computer’s investment 0.331��� -0.0136
Constant 3.217�� 3.021��� 3.815��� 1.754���

Observations 980 1000 820 820
� p   0.05, �� p   0.01, ��� p   0.001

2.A.4 Convergence and Dynamics

Figure 2.7 shows the frequency with which participants switch actions over

time in the non-incentivized and incentivized periods. In treatments dD and

eD there seems to be little learning over time. Participants switch their choices

across periods with a probability of around 0.6. This number barely declines

over time (with the exception of the first 5 periods, where it drops from 0.8

to 0.6) and there is no discernible difference between incentivized and non-

incentivized periods. There seems to be almost no learning in these treatments

and participants remain unsure about what to choose until the end of the 40

periods.
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Figure 2.7: Relative frequency of changes in investments from one round to the other, by
treatment.
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The picture looks much different in the treatments dT and eT. In the incen-

tivized rounds, participants on average switch their choice with a probability of

0.4 (dT) or 0.3 (eT). Switching probabilities decrease over time, both within

and across blocks and there is a clear difference between incentivized and non-

incentivized rounds. Participants seem to be using non-incentivized rounds to

experiment and learn about best responses and then apply these in incentivized

rounds. The difference between treatments with difficult and trivial belief for-

mation is highly statistically significant (one-sided t-test p   0.0001), so is the

difference between dT and eT (one-sided t-test on incentivized rounds only

p � 0.0392.

2.A.5 Treatments with no Strategic Uncertainty and no Addi-
tional Learning Opportunities
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Figure 2.8: Theoretical best response and empirical distribution of investments, conditional
on the strategy played by the computer. Panels at the top reproduce figure 2.4.

Table 2.13: Behavioural variation across treatments, using data from incentivized rounds in
the the second half of the experiment. Behavioural variation differs from that in table 2.2
because here it is calculated on pooled data instead of conditioning on opponent’s actions.

dD eD dT-var eT-var
Entropy 3.51 3.28 3.55 3.25
Std. dev. 3.30 2.61 3.84 2.58
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Figure 2.9: Distribution of investment choices from all treatments in the incentivized rounds
of the second half of the experiment (rounds 26-30 and 36-40). Vertical dashed lines separate
undominated (¤ 4) from dominated choices (¡ 4).

2.A.6 Within-Subject and Between-Subject Variability

Table 2.14: Within-subject and between-subject variability by treatment. Variables: mean
squares (MSQ) and sum of squares (SSQ) within subjects and between subjects. Variability
is computed conditional on opponent’s investment and then averaged using the frequency
of each strategy chosen in the standard contest as weights. Data from incentivized rounds
in the second half of the experiment.

Treatment MSQ Within MSQ Between SSQ Within SSQ Between
dD 3.96 17.34 1.65 9.17
eD 2.27 11.16 1.14 5.55
dT 2.74 49.15 2.28 8.28
eT 0.36 7.71 0.30 1.25

Table 2.14 decomposes the behavioural variation (standard deviation) into

within and between subject variation. The table reports both sum of squares

and mean of squares, each decomposed into between and within subject varia-

tion. The table shows that both within-subject and between-subject variability

is lower in eD compared to dD and lower in eT compared to dT. Hence making

it easier to formulate best responses lowers both within and between subject

variability irrespective of whether belief formation is difficult or trivial. Fur-

thermore, within subject variation is lower in eT compared to eD, but the
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difference between dT and dD is not significant. Overall, eT has the lowest

level of both types of variability whereas dD and dT are most variable.

2.A.7 Cognitive Abilities and Equilibrium Deviations

Table 2.15: Random effects estimation in dT treatment. In the first model the dependent
variable is the absolute difference between the strategy used by the computer and the
investment level, in the second model the dependent variable is the absolute difference
between the theoretical best-response and investment level. Standard errors clustered on
subject level. Data from all incentivized rounds.

Distance to computer strategy Distance to BR
Numeracy score 0.607� -0.843���

(2.56) (-3.71)
Age 0.318 -0.191

(1.47) (-1.31)
Female 0.683 -0.457

(0.75) (-0.67)
Constant -5.253 12.38���

(-1.16) (3.65)
Observations 410 410

t statistics in parentheses
� p   0.05, �� p   0.01, ��� p   0.001

2.A.8 Summary Statistics

Table 2.16: Summary statistics from the questionnaire (mean and range). Numeracy score
counts the number of correct answers in the numeracy test.

dD eD dT eT
Age 21.86 21.57 21.70 21.85

(18,41) (18,26) (18,26) (19,30)
Female 0.36 0.53 0.45 0.63

(0,1) (0,1) (0,1) (0,1)
Numeracy score 5.20 5.22 5.11 5.27

(1,7) (0,8) (1,8) (0,8)
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2.B Instructions

2.B.1 Instruction for Treatment dD

INSTRUCTIONS

Welcome to the experiment. Please read the instructions carefully. They are

identical for all the participants with whom you will interact during this exper-

iment.

If you have any questions please raise your hand. One of the experimenters

will come to you and answer your questions. From now on communication with

other participants is not allowed. If you do not conform to these rules you will

be excluded from the experiment with no payment. Please do also switch off

your mobile phone at this moment.

In this experiment you can earn some money. How much you earn depends

on your decisions and the decisions of the other participants. During the ex-

periment we will refer to ECU (Experimental Currency Unit) instead of Euro.

The total amount of ECU that you will have earned during the experiment

will be converted into Euro at the end of the experiment and paid to you in

cash confidentially. The conversion rate that will be used to convert your ECU

earnings into your Euro cash payment will be shown to you on the screen at

the beginning of the experiment.

The Experiment

The main part of this experiment consists of 4 blocks with 10 rounds in each

block. In each block, the first five rounds are for practice only so that you can

experiment without affecting your cash earnings from this experiment. At the

end of the experiment, one round out of the final five rounds in each block (that

is one round of rounds 6-10 in each block) will be randomly selected and the

sum of your round incomes in these selected rounds will be converted into euros

and paid to you in cash.

The Task

The task is the same in each of the 40 rounds. At the beginning of each round

the computer will randomly match you with another participant in this room.

You will not know who the other participant is, and the other participant you

are matched with is likely to change every round. The other participant that

is matched with you will receive the same information and will face exactly the

same task. In each round each participant will receive an endowment of 16

ECU. The endowment can be used to purchase “tokens”. Each token costs 1
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ECU so that you can purchase up to 16 of these tokens. You have to buy at

least one token. Any part of your endowment that you do not spend on tokens

will be added to your round income.

After you and the other participant have chosen how many tokens to buy,

only one of you will receive the extra 16 ECU. The probability that you will

receive the extra 16 ECU depends on the number of tokens that you buy and

the number of tokens that the other participant buys. More precisely, the

probability that you receive the extra 16 ECU is given by:

Probability of

receiving the extra 16

ECU

=
Number of tokens you bought

�100%
Number of tokens

you bought

+ Number of tokens the

other participant bought

For example, if both of you have purchased the same number of tokens, the

probability that each of you will receive the extra 16 ECU is 50%. Note that

either you or the other participant will always receive the extra 16 ECU.

Whether you or the other participant will receive the extra 16 ECU will be

determined by a random draw by the computer according to the probabilities

given by the number of tokens bought by you and by the other participant.

Then the computer will compute your round income based on the number of

tokens that you bought and whether you have received the extra 16 ECU or

not. Once the round is over, you will be informed about the number of tokens

bought by you and by the other participant, the probability to receive the extra

16 ECU, the outcome of who receives the extra 16 ECU and your round income,

and that of the other participant.

• If you receive the extra 16 ECU, your round income will be:

Round Income = 16 ECU � Number of purchased tokens + 16 ECU

• If you do not receive the extra 16 ECU, your total earnings in the round

will be:

Round Income = 16 ECU � Number of purchased tokens

At the end of the experiment, four rounds will be randomly selected for pay-

ment. More precisely, the first round for payment will be randomly selected

from rounds 6-10, the second round for payment from rounds 16-20, the third

from rounds 26-30 and the fourth one from rounds 36-40. Outcomes in all

other rounds will not influence your final earnings, but you will not know which

rounds will be selected until the end of the experiment.
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After the 40 rounds we will ask you to fill in a short questionnaire. The ques-

tionnaire will have two parts, each of which will be explained on the screen

before you start answering the questions. After the first part of the question-

naire you will be informed about all of your round incomes as well as about

the four rounds that were randomly selected for payment (see Figure 1 on the

next page). After the second part of the questionnaire you will be informed

about your final earnings in euro. You will receive these earnings in cash and

in private at the end of the experiment. Please stay seated until we ask you to

come to receive the earnings.

If you have any further questions, please raise your hand now.

Summary

The structure of the experiment is as follows:

• The main part of the experiment consisting of 40 rounds.

• Questionnaire, part 1. After answering these questions you will be in-

formed about your final earnings in ECU.

• Questionnaire, part 2. Once you have completed it, you will be informed

about your final cash earnings in euros.

• Please stay seated until the experimenter asks you to come and receive

the earnings.
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2.B.2 Instruction for Treatment eT

INSTRUCTIONS

Welcome to the experiment. Please read the instructions carefully. They are

identical for all the participants with whom you will interact during this exper-

iment.

If you have any questions please raise your hand. One of the experimenters

will come to you and answer your questions. From now on communication with

other participants is not allowed. If you do not conform to these rules you will

be excluded from the experiment with no payment. Please do also switch off

your mobile phone at this moment.

In this experiment you can earn some money. How much you earn depends

on your decisions and the decisions of the other participants. During the ex-

periment we will refer to ECU (Experimental Currency Unit) instead of Euro.

The total amount of ECU that you will have earned during the experiment

will be converted into Euro at the end of the experiment and paid to you in

cash confidentially. The conversion rate that will be used to convert your ECU

earnings into your Euro cash payment will be shown to you on the screen at

the beginning of the experiment.

The Experiment

The main part of this experiment consists of 4 blocks with 10 rounds in each

block. In each block, the first five rounds are for practice only so that you can

experiment without affecting your cash earnings from this experiment. At the

end of the experiment, one round out of the final five rounds in each block (that

is one round of rounds 6-10 in each block) will be randomly selected and the

sum of your round incomes in these selected rounds will be converted into euros

and paid to you in cash.

The Task

The task is the same in each of the 40 rounds. In each round you will receive

an endowment of 16 ECU. The endowment can be used to purchase “tokens”.

Each token costs 1 ECU so that you can purchase up to 16 of these tokens. You

have to buy at least one token. Any part of your endowment that you do not

spend on tokens will be added to your round income.

In every round you will be matched to a computerized participant (computer).

The computer will buy a certain number of tokens (between 1 and 16), and this

number is pre-determined before the start of the experiment. The number of
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tokens bought by the computer in any round will be announced on the screen

before you make your buying decision for that round. This amount will be the

same in each round of a block, but will change from one block to another. That

means that the computer will buy the same number of tokens in rounds 1-10,

11-20, 21-30 and 31-40.

After you have chosen how many tokens to buy, you and the computer will

receive an extra 16 ECU. The share of the extra 16 ECU that you receive

depends on the number of tokens that you buy and the number of tokens that

are bought by the computer. More precisely, the share of the extra 16 ECU is

given by:

Share of the extra 16

ECU
=

Number of tokens you bought
�100%

Number of tokens

you bought

+ Number of tokens the

other participant bought

For example, if you purchase the same number of tokens as the computer, the

share of 16 ECU will be equal to 50%, meaning that you will receive 8 ECU.

Your round income will be computed based on the number of tokens that you

bought and the share of the extra 16 ECU that you have received. Once the

round is over, you will be informed about the number of tokens bought by you

and by the computer, the share of the extra 16 ECU, your round income, and

that of the computer. Information about the number of tokens and the share of

16 ECU allocated to you and to the other participant will also be represented

visually.

• Your round income will be:

Round Income = 16 ECU � Number of purchased tokens + (Share

of the extra 16 ECU)*16 ECU

At the end of the experiment, four rounds will be randomly selected for pay-

ment. More precisely, the first round for payment will be randomly selected

from rounds 6-10, the second round for payment from rounds 16-20, the third

from rounds 26-30 and the fourth one from rounds 36-40. Outcomes in all

other rounds will not influence your final earnings, but you will not know which

rounds will be selected until the end of the experiment.

After the 40 rounds we will ask you to fill in a short questionnaire. The ques-

tionnaire will have two parts, each of which will be explained on the screen

before you start answering the questions. After the first part of the question-

naire you will be informed about all of your round incomes as well as about
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the four rounds that were randomly selected for payment (see Figure 1 on the

next page). After the second part of the questionnaire you will be informed

about your final earnings in euro. You will receive these earnings in cash and

in private at the end of the experiment. Please stay seated until we ask you to

come to receive the earnings.

If you have any further questions, please raise your hand now.

Summary

• The main part of the experiment consisting of 40 rounds.

• Questionnaire, part 1. After answering these questions you will be in-

formed about your final earnings in ECU.

• Questionnaire, part 2. Once you have completed it, you will be informed

about your final cash earnings in euros.

• Please stay seated until the experimenter asks you to come and receive

the earnings.

Figure 2.10: A screenshot of the final profit display. Round incomes in this screenshot were
randomly generated. [Picture used in the instructions of all treatments]
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2.B.3 Instructions for the Questionnaire

Apart from questions about age, gender, bachelor programme and previous

experience in the lab, the following 8 questions were asked in the numeracy

questionnaire. These questions were the ones with the lowest number of correct

responses (less than 80% among respondents with higher education) among the

15 questions used in Peters et al. (2007).

• If Person A’s chance of getting a disease is 1 in 100 in 10 years, and person

B’s risk is double that of A, what is B’s risk?

• Imagine that you are taking a class and your chances of being asked a

question in class are 1% during the first week of class and double each

week hereafter (i.e., you would have a 2% chance in Week 2, a 4% chance

in Week 3, an 8% chance in Week 4). What is the probability that you

will be asked a question in class during Week 7? (in %)

• Suppose that 1 out of every 10,000 doctors in a certain region is infected

with the SARS virus; in the same region, 20 out of every 100 people in

a particular at-risk population also are infected with the virus. A test

for the virus gives a positive result in 99% of those who are infected and

in 1% of those who are not infected. A randomly selected doctor and a

randomly selected person in the at-risk population in this region both test

positive for the disease. Who is more likely to actually have the disease?

• In the Acme Publishing Sweepstakes, the chance of winning a car is 1 in

1,000. What percentage of tickets of Acme Publishing Sweepstakes wins

a car?

• Imagine that we roll a fair, six-sided die 1,000 times. Out of 1000 rolls,

how many times do you think the die would come up even (2, 4, or 6)?

• In the Big Bucks Lottery, the chances of winning a 10 prize are 1%. What

is your best guess about how many people would win a 10 prize if 1000

people each buy a single ticket from Big Bucks?

• The chance of getting a viral infection is 0.0005. Out of 10,000 people,

about how many of them are expected to get infected?

• Suppose you have a close friend who has a lump in her breast and must

have a mammogram. Of 100 women like her, 10 of them actually have a

malignant tumor and 90 of them do not. Of the 10 women who actually

have a tumor, the mammogram indicates correctly that 9 of them have a
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tumor and indicates incorrectly that 1 of them does not. Of the 90 women

who do not have a tumor, the mammogram indicates correctly that 81 of

them do not have a tumor and indicates incorrectly that 9 of them do have

a tumor. The graph below summarizes all of this information. Imagine

that your friend tests positive (as if she had a tumor), what is the likelihood

that she actually has a tumor?





Chapter 3

Inefficient Lock-in with
Sophisticated and Myopic
Players

3.1 Introduction

This chapter as well as chapter 4 switch focus from a game of conflict to a game

of coordination. The problem faced by game theory in coordination games is

quite different from the problem addressed in chapter 2: in contests Nash equi-

librium could not explain experimental data, but in coordination games the set

of subgame perfect Nash equilibria is so large that it leads to vacuous predic-

tion about the choice path. Any repetition of a stage game Nash equilibria

could be supported by some subgame perfect Nash equilibrium, but even mis-

coordination can occur at the start of the game if it is followed by efficient

coordination. One reason for the multiplicity of equilibria is the lack of history

dependence. As an example, consider figure 3.1 that represents two stages of a

repeated game between players 1 and 2. Subgames starting at nodes 1b and 1c

for player 1 are identical1, therefore if there is an equilibrium that supports an

action for player A in node 1b, there will also be an equilibrium that supports

this action in node 1c. Nash equilibrium requires mutually consistent beliefs

and actions but places no restrictions on how beliefs should depend on observed

history. However, even though expecting the same action to be played is just

as rational as expecting a different action (Goodman, 1983), there is robust ex-

perimental evidence that choices and beliefs do depend on past play, especially

in games with multiple stable states (Van Huyck et al., 1990; Romero, 2011).

1Except for the accumulated earnings that play no role under the standard assumptions of risk
neutrality and selfishness.
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We use this finding to place additional restrictions on the belief formation pro-

cess and develop a solution concept that depends on past play and refines the

predictions of a subgame perfect Nash equilibrium.
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Figure 3.1: Two stages of a repeated two player game, where the first number indicates the
player to whom the node belongs. End nodes display payoffs from the second stage.

Instead of using a solution concept such as a subgame perfect Nash equilib-

rium we could use a learning model which makes predictions about the path of

play based on outcomes in previous rounds. However, in such learning models

(see Fudenberg and Levine, 1998, Camerer, 2003, chapter 6) choices are deter-

mined only by observed history, ignoring the structure of upcoming rounds. In

this chapter the belief formation assumed in learning models is combined with

an equilibrium concept to define a solution concept that takes into account both

the observed history and the structure of future rounds.

Players in our model are assumed to be either “myopic” or “sophisticated”.

Myopic players behave as predicted by adaptive learning models: they form be-

liefs about the actions of other players, update them based on observed history

(we use a weighted fictitious play model by Cheung and Friedman, 1997) and

choose a myopic best response. Sophisticated players have a certain planning

horizon and compare payoffs of action plans that prescribe an action for each

point in time within this planning horizon. We also assume that sophisticated

players anticipate the learning process of myopic players and know about other

sophisticated players, therefore our solution concept requires action plans of

sophisticated players to be mutual best responses to each other.
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One of the reasons for developing such a solution concept is its ability to

make predictions following a particular history of choices. Game theory and ex-

perimental economics typically abstract from the experience that players might

have prior to the game, but in many real life situations decisions are made re-

peatedly and choices are sensitive to conventions that have been established by

past actions. Such situations could be modelled using a coordination game with

multiple stable states in which play can converge to an inefficient state (Arthur,

1989), establishing a history that makes subsequent efficient coordination hard.

It is important to have a theory that could explain how transitions to an efficient

state depend on game parameters and history of play, but existing models are

not able to do that. An adaptive learning model with a deterministic choice rule

predicts that an inefficient state would be implemented in all rounds because

of a positive feedback loop between beliefs and actions. Subgame perfect Nash

equilibrium could support any common action and the history of inefficient co-

ordination would play no role. A model presented in this chapter combines

the two approaches and predicts that a transition from an inefficient to the

efficient state can occur if certain conditions are satisfied, while transitions in

the opposite direction never occur.

Our model also predicts that some players may deviate from an inefficient

state, but none will deviate from the efficient one, therefore the efficient state

is absorbing and there is a unique point in time when play transitions from

the inefficient to the efficient state. For sophisticated players action paths

that prescribe a switch from an efficient to an inefficient action are dominated,

therefore sophisticated players will switch to the efficient action at most once.

We calculate how such action plans of sophisticated players affect the switching

period of myopic players, and how the latter affects sophisticated player payoffs.

This mapping from sophisticated player action plans to payoffs is then used to

determine the combinations of action plans that are mutual best responses to

each other.

Depending on the parameters of the game, three types of equilibria may

exist: in a “teaching equilibrium” sophisticated players switch to the efficient

action at the start of the game, and myopic players switch later. In an “inte-

rior equilibrium” sophisticated players initially play the inefficient action, but

switch to the efficient one and are subsequently followed by myopic players. In

a “delay” equilibrium all sophisticated players choose the inefficient action for

the entire duration of the game, and myopic players never switch. Point predic-

tions cannot be made because of the multiplicy of equilibria, therefore instead

we show how the speed of transition and the types of equilibria that exist re-
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spond to changes in game parameters. We find that as the planning horizon

of sophisticated players increases, the teaching and the interior equilibria are

more likely to exist, while the delay equilibrium is less likely. A longer history of

inefficient coordination makes teaching equilibrium less likely and delays tran-

sitions. The effect of player composition is ambiguous: on one hand, a larger

number of sophisticated players leads to a faster transition and higher profits

in the teaching and interior equilibria, reducing incentives to completely stop

teaching. On the other hand, as the number of sophisticated players grows, one

player’s actions have a smaller effect on myopic players, increasing incentives to

delay teaching and leading to a potential breakdown of a teaching equilibrium.

Several other studies have extended the adaptive learning model with sophis-

tication in different ways. Camerer et al. (2002a) and Camerer et al. (2002b)

propose a sophisticated experience-weighted attraction (EWA) model in which

some players are adaptive and learn using adaptive EWA, while others are so-

phisticated, anticipate how adaptive players learn and use strategic teaching.

While conceptually this chapter is similar to the model of sophisticated EWA,

we develop a solution concept that can be used to make ex-ante predictions

about the path of play in the game, while the parameters of sophisticated EWA

can be estimated only ex-post. Ellison (1997) models a population of adaptive

players, learning according to fictitious play, repeatedly matched in pairs to

play a binary choice coordination game. Adding one rational player to the pop-

ulation of adaptive players can change the outcome from coordination on the

inefficient equilibrium to coordination on the efficient one, as long as the number

of players is fixed and the rational player is patient enough. Acemoglu and Jack-

son (2015) develop an overlapping generations model that shows how a social

norm of low cooperation can be overturned by a single forward-looking player.

Schipper (2011) uses an optimal control model with two players and shows

how a strategic player can control an adaptive player in repeated games with

strategic substitutes or strategic complements. Mengel (2014) studies adaptive

players who are also forward-looking and finds that in two-player coordination

games the efficient equilibrium may be stochastically stable, in contrast to the

the case with only adaptive players.

3.2 Sophisticated Player Equilibrium

Consider n players, indexed by i P N � t1, 2, . . . , nu, who play a repeated game

in continuous time by choosing an action from a stage game action space tA,Bu.
We denote the time at which the game starts by 0, the duration of the remaining
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game by T̄ and the duration of observed history by T 1, with T̄ , T 1 P p0,8q. We

implement the history of inefficient coordination by assuming that prior to time

0 only action B has been chosen.

We assume two types of players: m players are myopic and n�m players are

sophisticated. Throughout the chapter we will index sophisticated players by

s P S and myopic players by i P NzS. The two types of players follow different

choice rules, respectively denoted by ai and as, which prescribe an action for

each moment in time. We will refer to ai as a choice function and to as as an

action plan. Denote the action of player i at time t by aiptq and the action of

player s by asptq, where action A is coded as 1 and action B is coded as 0. Denote

the combination of actions of all players except i by a�iptq � �jPNztiuajptq, with

a�iptq P A�i, and denote the combination of actions of all sophisticated players

except s by a�sptq � �jPSztsuajptq, with a�sptq P A�s. The payoff flow for

player i at time t is πipaiptq,�jPNztiuajptqq. Similarly, denote the combination

of choice functions of all myopic players except i by a�i � �jPtNzSuztiuaj and

the combination of action plans for all sophisticated players except s by a�s �
�jPSztsuaj.

The difference between a choice function for myopic players and an action

plan for sophisticated players lies in how these functions are determined: choices

of myopic players are determined by the history of play while the choices of

sophisticated players must be optimal given the choices of all other players.

Before specifying these two function we first have to define the beliefs and

expected payoffs of myopic players.

Belief of a myopic player is a probability assigned to the event that a

randomly chosen other group member chooses action A. Denote the belief of

player i at time t by xiptq. Belief formation is assumed to follow a one parameter

weighted fictitious play model,2 proposed by Cheung and Friedman (1997). The

original weighted fictitious play model is specified for two player games and we

extend it to N -person games by assuming that a joint distribution of choices

is used to form beliefs about the actions of group members, but players do not

distinguish between the identities of others.3 Beliefs are therefore homogeneous

2Fictitious play corresponds to Bayesian updating of the probability that any group member will
choose A, using a Dirichlet prior and assuming that the choice of each group member was independently
drawn from the distribution about which players are learning.

3There are several other ways how weighted fictitious play could be extended to N -person games.
One way could be to assume that players form beliefs about the joint distribution of the actions of all
others and update it using observed aggregate feedback: for example, Crawford (1995) assumes that
players form beliefs and observe feedback about an order statistic of all the choices. Another way is to
assume that separate beliefs are formed about every other player j based on the empirical distribution
of j’s choices (e.g. Monderer and Shapley, 1996). We combine the two approaches by assuming that
players use the joint distribution of choices to form beliefs about the action of any opponent, but do
not distinguish between their identities.
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(Rapoport, 1985; Rapoport and Eshed-Levy, 1989): a single belief is formed

about the probability that any other player will choose A. The fictitious play

rule used to calculate myopic player beliefs is as follows:

xiptq �

³t
k�0

γk
°
jPNztiu

ajpt�kq

n�1
dk³t�T 1

k�0
γk dk

(3.1)

The integral in the numerator measures the weighted length of time in which

action A has been observed, determined by the action plans of other group

members. Observations prior to time 0 play no role because we assume that

prior to time 0 only action B has been observed. The γ parameter measures the

rate at which old observations are forgotten. We assume that γ P p0, 1q, where

values close to 1 indicate that all past observations are given similar weights,

while values close to 0 indicate that only the most recent experience is taken

into account.

Expected payoffs of myopic players associated with each pure action are

determined by beliefs xiptq, which are used to assign a probability to each action

profile of other group members:

Eπipa, xiptqq �
¸

a�iPA�i

rPrpa�iptq � a�i|xiptqq � πipa, a�iqs �

�
¸

a�iPA�i

rxiptqp
°
a�iqp1� xiptqqpn�1�

°
a�iq � πipa, a�iqs, @a P t1, 0u

(3.2)

Choice function aipt,�sPS asq prescribes an action for a myopic player i

at any point in time t P r0, T̄ s, conditional on the profile of action plans chosen

by sophisticated players, �sPS as. We assume that myopic players choose the

action that maximizes immediate expected utility and ties are broken in favour

of action A:

aipt,�sPSasq �

"
1 if Eπip1, xiptqq ¥ Eπip0, xiptqq
0 otherwise

(3.3)

Action plans chosen by sophisticated players, �sPS as, are explicitly included

in the choice function to make it transparent that myopic player actions can be

affected by sophisticated players. Note that the choice function depends only on

the current round payoffs and beliefs, which are determined by observed history,

therefore it is possible to anticipate myopic player choices at any history.

Sophisticated players anticipate the learning process of myopic players

and are also farsighted, thus at time 0 they choose an action plan for the
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interval r0, T s, where T is the length of the planning horizon of sophisticated

players.

Action plan as prescribes an action for a sophisticated player s at any

point in time t P r0, T s. Denote the set of all action plans by As. The action

plan is assumed to be an open-loop strategy, which depends only on time and

not on observed history. Sophisticated players face no strategic uncertainty

about the actions of myopic players, but they do face uncertainty about the

actions of other sophisticated players. Payoffs associated with an action plan

as depend on the vector of action plans of other sophisticated players, a�s,

and on the choices of myopic players, whose choice function aipt, as � a�sq also

depends on the action plans of all sophisticated players. The total payoff that

a sophisticated player expects to earn over the period of length T is calculated

as follows:

Πpas, a�s, aip�, as � a�sqq �
» T

0

πrasptq, a�sptq � aipt, as � a�sqsdt (3.4)

Since sophisticated players choose action plans and face no strategic uncer-

tainty about the actions of myopic players, the game can be reduced to a static

game between sophisticated players. Theoretical predictions in static games

are typically made using a Nash equilibrium, so we follow the convention and

require that sophisticated players choose action plans that are mutual best re-

sponses to each other.

Definition 1. A combination of action plans �sPS a
�
s is a symmetric sophis-

ticated player equilibrium if for each player s P S, a�s satisfies

Πpa�s , a
�
�s, aip�, a

�
s , a

�
�sqq ¥ Πpas, a��s, aip�, as, a

�
�sqq, @as P As (3.5)

and a�s � a�j , @s, j P S

and aip�, as, a�sq is defined in (3.3).

If there were no myopic players, equation (3.5) would reduce to the standard

Nash equilibrium. If all players were myopic, equation (3.5) would not apply,

and the choices of all players would be calculated using the belief learning model.

We will look at an intermediate case where both myopic and sophisticated

players are present.

In the remainder of the chapter we will characterize the symmetric sophisti-

cated player equilibria for a repeated N -person critical mass coordination game.
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3.3 Sophisticated Player Equilibrium in a Critical
Mass Game

We are interested in determining conditions under which an inefficient conven-

tion could be replaced by an efficient one. One way how such a transition

could take place is by strategic choice: sophisticated players could attempt to

teach other players to play according to the efficient convention. To determine

conditions under which such strategic teaching is possible we will character-

ize symmetric sophisticated player equilibria following lock-in to an inefficient

state.

3.3.1 Critical Mass Game

Recall that we defined a sophisticated player equilibrium for a class of games

with n players and an action space tA,Bu. A special class of such games is a

critical mass game, in which payoffs of each player depend on their action, aiptq
and on the total number of other group members who chose action A at time

t, denoted by rpa�i, tq �
°
jPNztiu ajptq, with rpa�i, tq P t0, 1, . . . , n � 1u. The

payoff flow for player i at time t is defined as follows:

πpaiptq, a�iptqq �

$'&'%
H if rpa�i, tq ¥ θ and aiptq � 1
0 if rpa�i, tq   θ and aiptq � 1
M if rpa�i, tq ¥ θ and aiptq � 0
L if rpa�i, tq   θ and aiptq � 0

(3.6)

To have a coordination game, we assume that H ¡ M and L ¡ 0. The

coordination requirement is determined by an exogenous threshold θ: action A

generates a larger payoff than B if and only if at least θ other group members

choose A. There are two stable states4 in pure strategies if one point in time is

considered in isolation: in the first stable state all players choose A and in the

second one all players choose B. We assume that states are Pareto-ranked and

define coordination on A as an efficient state by assuming that H ¡ L. Finally,

we assume that M ¥ L, so that players who choose B also prefer a situation in

which the threshold has been exceeded.

Assumption 1: H ¡ M ¥ L ¡ 0.

We assume that there are at least 2 sophisticated players so that an equi-

librium could be defined using equation 3.5. We also assume that the number

of myopic players is sufficiently large to implement the efficient state, and the

number of sophisticated players is small enough so that sophisticated players

4We will use the term “state” rather than “equilibrium” when referring to a Nash equilibrium in a
stage game to avoid confusion with the sophisticated player equilibrium.
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on their own could not implement the efficient state. If the latter condition was

not satisfied, a sophisticated player equilibrium would reduce to the standard

Nash equilibrium because sophisticated players would not need to take into

account the learning process of myopic players.

Assumption 2: 2 ¤ n�m   θ ¤ m.

3.3.2 Choice Function of Myopic Players

Myopic players form beliefs about the actions of other players and choose an

action that maximizes immediate payoffs. In this subsection we specify the

choice function aipt, asq that prescribes an action for player i at time t when

sophisticated players are choosing action plans �sPSas (for brevity, we will omit

the subscript under the product sign).

Proposition 1. Suppose that in a game with payoffs defined by (3.6) at time t

myopic player i holds beliefs xiptq. Then the choice function from (3.3) simpli-

fies to:

aipt,�asq �

"
1 if xiptq ¥ I�1

L
L�H�M

pθ, n� θq

0 otherwise
(3.7)

where I�1 is the inverse of an incomplete regularized beta function.

Proof.

From (3.3), action A is chosen if the expected payoff of A at time t exceeds

the expected payoff of B:

aiptq � 1 ô Eπp1, xiptqq ¥ Eπp0, xiptqq (3.8)

In a critical mass game payoff depends only on the chosen action and on

whether the number of other group members who chose A exceeds θ. Denote

the subjective probability assigned to the latter event by Prrrpa�i, tq ¥ θ|xiptqs.
Then expected payoffs in equation (3.2) can be defined as:

Eπp1, xiptqq � 0� p1� Prrrpa�i, tq ¥ θ|xiptqsq �H � Prrrpa�i, tq ¥ θ|xiptqs

Eπp0, xiptqq � L� p1� Prrrpa�i, tq ¥ θ|xiptqsq �M � Prrrpa�i, tq ¥ θ|xiptqs
(3.9)

The subjective probability that the threshold will be exceeded is calculated

by adding the probabilities assigned to all action profiles of other players in

which more than θ players choose A:

Prrrpa�i, tq ¥ θ|xiptqs �
n�1̧

k�θ

pxiptqqkp1� xiptqqn�1�k

�
n� 1

k



(3.10)
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Use equations (3.9) and (3.10) to rewrite (3.8) the following way:

aiptq � 1 ô
n�1̧

k�θ

pxiptqqkp1� xiptqqn�1�k

�
n� 1

k



¥

L

L�H �M
(3.11)

Notation in (3.11) is simplified using the definition of an incomplete regu-

larized beta function:5

aiptq � 1 ô Ixptqpθ, n� θq ¥
L

L�H �M
(3.12)

Taking the inverse of (3.12) and substituting into (3.3) leads to the desired

expression:

aipt,�asq �

"
1 if xiptq ¥ I�1

L
L�H�M

pθ, n� θq

0 otherwise

�

Proposition 1 states that a myopic player chooses A instead of B if his

probabilistic belief exceeds I�1
L

L�H�M

pθ, n � θq, a threshold value that depends

only on the game parameters. For brevity, we will refer to this threshold value

by I�1. We should note that the properties of inverse regularized beta functions

imply that I�1 is increasing in L, M and θ, but decreasing in H and n.

Proposition 1 shows that myopic player actions can be determined by com-

paring their beliefs to a threshold value that is fixed in a given game. Once

myopic player actions are know, Assumption 2 ensures that the efficient state

is implemented if and only if all myopic players choose A. The next section will

simplify the payoff calculation even further by showing that to know the payoff

flow it is sufficient to know the first time when myopic player beliefs exceed the

threshold value.

3.3.3 Undominated Action Plans of Sophisticated Players

This section shows that although sophisticated players could use action plans

that prescribe many switches from one action to the other, undominated action

plans must prescribe at most one switch from action B to action A and no

switches from action A to action B. The sophisticated player action space can

therefore be restricted to a set of real numbers that denote a switching time

from A to B.

5An incomplete regularized beta function is defined as Icpa, bq �
°a�b�1

k�a ckp1�cqa�b�1�k
�a�b�1

k

�
.

The function is well defined because L
L�H�M

P p0, 1q, from Assumption 1.
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Definition 2. Denote by Us (for “undominated”) the set of action plan profiles

in which no sophisticated player is choosing strictly dominated action plans:

Us � t�sPSas P As|Ea1s : Πra1s, a�s, aip�, a
1
s � a�sqs ¡ Πras, a�s, aip�, as � a�sqsu

An action profile will be called dominated if it is not in set Us, that is if

in this action profile at least one sophisticated player is choosing a dominated

action plan.

We will show that the set of undominated action plans cannot contain any

strategies that prescribe a switch from A to B, but the proof requires two

additional supporting lemmas.

Lemma 1. If two action plans of the sophisticated player prescribe the same

action, the payoff flow is higher for the action plan with which myopic player

beliefs are higher:

πra1sptq, a�sptq � aipt, a1s � a�sqs ¥ πrasptq, a�sptq � aipt, as � a�sqs

if xptq1 ¥ xptq and a1sptq � asptq

where xptq1 is the belief held by myopic players if the sophisticated player uses

action plan a1s and xptq is the belief if the sophisticated player uses action plan

as.

Proof: see Appendix 3.A.2.

Lemma 1 shows that sophisticated players can only benefit from myopic

players assigning a higher probability to others choosing A. The proof is based

on an observation that the tendency for myopic players to choose A is increasing

in their beliefs and sophisticated player payoffs are increasing in the number of

players who choose action A.

Definition 3. Denote by ABM the set of action plan profiles for sophisticated

players with which myopic players switch from A to B:

ABM � t�sPSas P As|Dt1, t2 P r0, T s : t1   t2

aipt1,�sPSasq � 1

aipt2,�sPSasq � 0u

Lemma 2. All action plan profiles for sophisticated players with which myopic

players switch from A to B are strictly dominated:

ABM X Us � H
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Proof: see Appendix 3.A.2.

The intuition of Lemma 2 is straightforward: if myopic players ever switch

to an efficient action A, the participation threshold will be exceeded as long as

sophisticated players continue choosing action A. Consequently, sophisticated

players who would choose B would lower their earnings. However, note that the

proof rests on Assumption 2, which says that the number of myopic players ex-

ceeds the participation threshold. If this assumption did not hold, an argument

about dominance could not be made because other sophisticated players may

prevent efficient coordination by switching to B, which would make switching

to B optimal.

Definition 4. Denote by ABS the set of action plan profiles for sophisticated

players with which at least one sophisticated player switches from A to B:

ABS � t�sPSas P As|Dt1, t2 P r0, T s, s P S : t1   t2

aspt1q � 1

aspt2q � 0u

Proposition 2. Action plan profiles for sophisticated players that prescribe a

switch from A to B for at least one sophisticated player are dominated:

ABS X Us � H

Proof.

Take an action plan profile �sPSas P ABS. We will show that in this action

profile at least one sophisticated player must be choosing an action plan that

is dominated.

If �sPSas P ABM , at least one sophisticated player must be choosing a

dominated action plan, from Lemma 2, and the proof would be completed.

Alternatively, assume that �sPSas P tABSzABMu. By the definition of ABS,

there must be a sophisticated player whose action plan prescribes a switch from

A to B; denote the action plan of this player by ras and denote the switching time

prescribed by ras by t1. Then there must be some small ε such that rasptq � 1

if t P rt1 � ε, t1q and rasptq � 0 if t P rt1, t1 � εs. Since �sPSas R ABM , myopic

players switch from B to A at most once, thus their choices can be described by

a number t̂prasq that identifies this switching time: B is chosen in the interval

r0, t̂prasqq and A is chosen in the interval rt̂prasq, T s.
First, suppose that t1 ¥ t̂prasq, then myopic players would be choosing A at

any time t ¥ t1. Assumption 2 implies that the threshold will be exceeded at

any such point in time, therefore an action plan ras is dominated by an action
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plan that prescribes A at each point in time t ¥ t̂prasq. Next, suppose that

t1   t̂prasq and t̂prasq ¡ T . Then myopic players will choose B for the entire

period that is taken into account by the sophisticated player, thus action planras will be dominated by an action plan that prescribes B at all times.

Alternatively, suppose that t̂prasq ¡ t1 and t̂prasq ¤ T (see an illustration in

figure 3.2). Choose ε to be sufficiently small to satisfy t̂prasq ¡ t1 � ε. Then for

any ras construct an action plan a1s the following way:

a1sptq �

$&% rasptq if t P r0, t1 � εq Y pt1 � ε, T s
0 if t P rt1 � ε, t1s
1 if t P pt1, t1 � εs

In other words, a1s is constructed by taking ras and swapping choices pre-

scribed in the interval pt1�ε, t1q with choices prescribed in the interval pt1, t1�εq.
We will show that ras is dominated by a1s.

The comparison of payoff flows generated by these two action plans is shown

in figure 3.2. In the interval r0, t � εq the sum of payoff flows is the same for

both action plans (π1 � π2 � π3 in figure 3.2). Payoffs are equal because with

both action plans myopic players choose B in this entire interval (both t̂pa1sq
and t̂prasq exceed t1� ε), therefore the participation threshold is never exceeded.

Action plan ras prescribes A for the same duration of time as a1s, therefore the

sum of payoffs in the interval r0, t1�εq would be the same for both action plans.

t
0 t1 � ε t1 t1 � ε t̂pa1sq t̂prasq T

πprasq � π1 π2 π3 π4 π5 π6

πpa1sq � π1 π3 π2 ¥ π4 ¡ π5 ¥ π6

Figure 3.2: Payoff flows generated by action plans ras and a1s for the case t̂prasq ¡ t1 and
t̂prasq ¤ T .

In the interval rt1� ε, T s the sum of payoffs generated by a1s is strictly higher

than that of ras. Since rasptq � a1sptq, @t P pt1 � ε, T s, any payoff difference

between the two action plans in this interval must be due to the choices of

myopic players. From equation 3.1, xiptq would be the same under rasptq as

under asptq1 if γ was equal to 1. But as γ P p0, 1q, older observations receive less

weight and therefore myopic player beliefs would be strictly higher following a1s
than following ras at any time t P pt1 � ε, T s. Then Lemma 1 implies that the

payoff flow is always weakly higher for a1s at any time in the interval rt1� ε, T s.
To get strict dominance, note that t̂pa1sq   t̂prasq, for the following reasons.

Since t̂pa1sq P pt
1 � ε, T s and xptq is continuous, the switching period t̂pa1sq must

satisfy x1ipt̂pa
1
sqq � I�1. But since rxiptq   x1iptq, @t P pt

1 � ε, T s, it must also
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hold that rxipt̂pa1sqq   x1ipt̂pa
1
sqq � I�1. Consequently, the intersection of beliefsrxiptq and belief threshold I�1 must occur strictly later, so that t̂pa1sq   t̂prasq.

In the interval pt̂pa1sq, t̂prasqq action plan ras provides a flow of payoffs of at most

L, while a1s provides a payoff of H because more than θ players are choosing A.

The comparison of payoff flows associated with action plans ras and a1s is

shown in figure 3.2. The sum of payoff flows generated by a1s will be strictly

higher than the sum of payoff flows generated by ras, therefore action plan ras
that prescribes switching from A to B is strictly dominated by another action

plan a1s.

�

The intuition of the proof is as follows: suppose that a sophisticated player

switches from A to B. If myopic players switch from B to A at the same time or

earlier, a sophisticated player would do better by always playing A instead. If

myopic players never switch to A, there would be no incentive to play A in the

first place. If myopic players switch at some time after the sophisticated player,

the sophisticated player can strictly increase the earnings by teaching less at

the start of the game and teaching more later.6 Doing so would not reduce the

payoffs prior to the switch, but would strictly decrease the switching time of

the myopic players, because weighted fictitious play puts more weight on re-

cent experience. Consequently, whenever sophisticated players are considering

teaching for some period of time, they would be better off concentrating all the

teaching just before the predicted switch of myopic players, thus a switch from

A to B would never occur.

This section has shown that if sophisticated players do not choose dominated

action plans, both myopic and sophisticated players will switch from B to A at

most once, thus in the equilibrium the path of choices for either type can be

described by a scalar indicating the switching time.

Each action path of myopic players that can be induced by undominated

action paths of sophisticated players has the following structure:

aipt,�asq �

"
0 if t P r0, t̂p�asqq
1 if t P rt̂p�asq, T s

@as P Us

Define t̂ P p0,8q as the switching period of myopic players. Note that

t̂ ¡ 0 because equation 3.1 implies that xip0q � 0, thus B is chosen at time 0.

Each undominated action plan for sophisticated players has the following

structure:

asptq �

"
0 if t P r0, ysq
1 if t P rys, T s

@as P Us

6By “teaching” we mean choosing action A to induce myopic players to choose A in the future.
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Define ys P r0, T s as a strategy for player s.

In the next section we will specify how the switching period of myopic players

depends on the strategies of sophisticated players.

3.3.4 Optimal Switching Period for Myopic Players

The characterization of symmetric sophisticated player equilibria requires infor-

mation about payoffs in an equilibrium and payoffs from potential deviations:

in the first case all pn �mq sophisticated players choose the same strategy, in

the second case pn�m� 1q sophisticated players choose one strategy and one

player chooses a different one. Denote the strategy of one sophisticated player

by ys � y and the strategy of other n�m� 1 sophisticated players by yj � ȳ,

for all j P tSzsu. Sophisticated player payoffs are determined by the switching

period of myopic players, thus we first specify function t̂py, ȳq that shows how

the myopic player switching period depends on y and ȳ.

There are three cases to consider. In the first case, t̂py, ȳq ¡ maxty, ȳu, so

that myopic players observe no other players choosing A from time 0 to time

minty, ȳu, a fraction of n�m
n�1

others choosing A from time maxty, ȳu to t̂py, ȳq
and either a fraction of 1

n�1
others choosing A from time ȳ to time y (if y ¡ ȳ)

or a fraction of n�m�1
n�1

others choosing A from time y to ȳ (if ȳ ¡ y). Feedback

observed by myopic players in this case is illustrated in figure 3.3.

In the second case, y   t̂py, ȳq   ȳ. This will be true only if 1
n�1

¡ I�1, that

is if myopic players would switch to A after observing only one player choosing

A. In this case each myopic player will observe no others choosing A from time

0 to y and a fraction of 1
n�1

others choosing A from time y to t̂py, ȳq.

In the third case, ȳ   t̂py, ȳq   y. Then each myopic player will observe no

others choosing A from time 0 to ȳ and a fraction of n�m�1
n�1

others choosing A

from time ȳ to t̂py, ȳq.

It is never possible that t̂py, ȳq   minty, ȳu because at time t P r0,minty, ȳuq
myopic players observe no others choosing A and therefore always choose B.

Proposition 3. The switching period of myopic players is:

t̂py, ȳq �

$''&''%
t̂2pyq if y   t̂2pyq ¤ ȳ and 1

n�1
¡ I�1

t̂3pȳq if ȳ   t̂3pȳq ¤ y and n�m�1
n�1

¡ I�1

t̂1py, ȳq if maxty, ȳu   t̂1py, ȳq and n�m
n�1

¡ I�1

8 otherwise

(3.13)



60 Inefficient Lock-in with Sophisticated and Myopic Players

such that

t̂1py, ȳq �
logpn�m

n�1
� I�1q � logpγ�ȳ n�m�1

n�1
� γ�y 1

n�1
� γT

1

I�1q

logpγq
(3.14)

t̂2pyq �
logp 1

n�1
� I�1q � logpγ�y 1

n�1
� γT

1

I�1q

logpγq
(3.15)

t̂3pȳq �
logpn�m�1

n�1
� I�1q � logpγ�ȳ n�m�1

n�1
� γT

1

I�1q

logpγq
(3.16)

where y is the strategy of one sophisticated player and ȳ is the strategy of

other pn�m� 1q sophisticated players.

It is never possible that more than one condition of 3.13 is satisfied because

t̂1py, ȳq ¤ t̂2pyq and t̂1py, ȳq ¤ t̂3pyq (see Lemma 10 in Appendix 3.A).

Proof.

Case 1: t̂py, ȳq ¡ maxty, ȳu

t
-T’ 0 y ȳ t̂py, ȳq T

B

B A

B A

B A

pm� 1q myopic players

1 sophisticated player

pn�m� 1q

sophisticated players

Figure 3.3: Illustration of the feedback observed by a single myopic player in the first case,
where t̂py, ȳq ¡ maxty, ȳu. In this example ȳ ¡ y. Vertical axis shows the fraction of other
players choosing A or B, horizontal axis shows the passage of time. The first sophisticated
player switches from B to A at time y, other pn �m � 1q sophisticated players switch at
time ȳ and myopic players switch at time t̂py, ȳq

Recall that beliefs of myopic players are calculated using weighted fictitious

play from equation 3.1. If sophisticated players are using strategies y and ȳ,

myopic player beliefs at any time t P pmaxty, ȳu, t̂py, ȳqs will be calculated using

the following rule:
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xiptq �

³t�ȳ
k�0

γkpn�m�1
n�1

qdk �
³t�y
k�0

γkp 1
n�1

qdk³t�T 1

k�0
γkdk

�

�
pγt�ȳ � 1qpn�m�1

n�1
q � pγt�y � 1qp 1

n�1
q

γt�T 1 � 1

Expressions in the numerator correspond to the history observed by a myopic

player at time t P pmaxty, ȳu, t̂py, ȳqs: pn � m � 1q sophisticated players are

observed choosing A for a period of t�ȳ and one sophisticated player is observed

choosing A for a period of t� y. This feedback is illustrated in figure 3.3. The

denominator measures the length of the entire history, including the T 1 rounds

of inefficient coordination.

From Proposition 1, myopic players will choose A at time t if xiptq ¥ I�1:

aiptq � 1 ô
pγt�ȳ � 1qpn�m�1

n�1
q � pγt�y � 1qp 1

n�1
q

γt�T 1 � 1
¥ I�1 ô

γt�T
1

pγ�ȳ�T
1 n�m� 1

n� 1
� γ�y�T

1 1

n� 1
� I�1q ¤

n�m

n� 1
� I�1 (3.17)

If n�m
n�1

� I�1 ¤ 0, equation (3.17) is never satisfied because of the following

relationship that contradicts (3.17):

γt�T
1

pγ�ȳ�T
1 n�m�1

n�1
� γ�y�T

1 1
n�1

� I�1q ¡ γt�T
1

pn�m
n�1

� I�1q ¥ n�m
n�1

� I�1

(3.18)

The first inequality holds because γ�ȳ�T
1

¡ 1 and γ�y�T
1

¡ 1 and the second

inequality holds because γt�T
1

  1 and n�m
n�1

� I�1 ¤ 0. But (3.18) contradicts

(3.17), therefore if n�m
n�1

� I�1 ¤ 0, equation (3.17) is never satisfied and myopic

players would choose B at any time t.

Alternatively, if n�m
n�1

� I�1 ¡ 0, condition (3.17) can be expressed the fol-

lowing way:

γ�t ¥
γ�ȳ n�m�1

n�1
� γ�y 1

n�1
� γT

1

I�1

n�m
n�1

� I�1
(3.19)

The left-hand side of (3.19) is strictly increasing in t and unbounded for

any γ P p0, 1q, so (3.19) will be satisfied for some t, although not necessarily

with t ¤ T . Equation (3.19) is not satisfied for t � 0 because the RHS of

(3.19) is always strictly larger than 1 (RHS is increasing in both y and ȳ,

but RHS ¡ 1 even if y � ȳ � 0 because n�m
n�1

� γT
1

I�1 ¡ n�m
n�1

� I�1) and

γ�t   1. Consequently, (3.19) must be satisfied with equality at a unique value
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of t, which we denote by t̂1py, ȳq, with t̂1py, ȳq P p0,8q. This value is the first

moment in time at which myopic players are indifferent between choosing A

and B, thus it is exactly the switching period which we were looking for. To

get an expression for t̂1py, ȳq, require (3.19) to be satisfied with equality and

rearrange the following way:

t̂1py, ȳq �
logpn�m

n�1
� I�1q � logpγ�ȳ n�m�1

n�1
� γ�y 1

n�1
� γT

1

I�1q

logpγq
(3.20)

Of course, t̂py, ȳq can be calculated using (3.20) only if n�m
n�1

� I�1 ¡ 0,

otherwise myopic players would always play B. The precise characterization of

the switching period if case 1 is applicable is as follows:

t̂py, ȳq �

"
t̂1py, ȳq if n�m

n�1
� I�1 ¡ 0

8 otherwise
(3.21)

Note that it is not required that t̂1py, ȳq ¤ T , therefore it is possible that the

planning horizon of a sophisticated player is too short to take re-coordination

into account.

Case 2: y   t̂   ȳ

Case 3: ȳ   t̂   y

Proofs for Case 2 and Case 3 are in Appendix 3.A.1.

�

Lemma 3. Bt̂2pyq

By
¡ 1.

Proof: see Appendix 3.A.2.

Lemma 3 implies that if t̂2p0q   T , it would be optimal for all sophisticated

players to choose y � 0: increasing y by an amount of ε would increase the

payoffs by εL, because of a longer delay, but would simultaneously decrease

the payoffs by more than εH because of the longer switching period of myopic

players.

3.3.5 Payoffs of Sophisticated Players

Proposition 3 shows how t̂py, ȳq, the switching period of myopic players, depends

on sophisticated player strategies, if one player is using strategy y and all other

players are using strategies ȳ. Proposition 4 will show how this specification

can be used to calculate the sum of payoffs received by sophisticated players

over the period that is taken into consideration.
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Proposition 4. If a sophisticated player s uses strategy ys � y and other

sophisticated players use strategies y�s � ȳ, total payoff received by player s

over period r0, T s is Πpy, ȳq such that:

Πpy, ȳq �

$'''&'''%
Π1 � yL� pT � t̂1py, ȳqqH if t̂1py, ȳq ¤ T , t̂2pyq ¥ ȳ, t̂3pȳq ¥ y (3.22a)

Π2 � yL� pT � t̂2pyqqH if t̂2pyq   ȳ (3.22b)

Π3 � yL� pT � yqH if t̂3pȳq   y (3.22c)

Π4 � yL if t̂1py, ȳq ¡ T (3.22d)

where t̂1py, ȳq, t̂2pyq and t̂3pȳq are specified in Proposition 3.

Proof.

The payoff function depends on the switching period of myopic players,

which is determined by one of the four equations in condition (3.13). Each pos-

sibility is shown in figure 3.4. Consider panel (a), which illustrates a situation

where all sophisticated players switch to A first7, and myopic players follow

later, therefore their switching time is calculated as t̂1py, ȳq. The participation

threshold is not exceeded at any time prior to t̂1py, ȳq and is exceeded after-

wards, therefore the payoff flow of a sophisticated player is L prior to time y, 0

between time y and t̂1py, ȳq and H afterwards. The sum of payoffs in this case

would be equal to Π1py, ȳq � yL� pT � t̂1py, ȳqqH. Panel (a), however, applies

only if myopic players switch after all sophisticated ones, that is if t̂2pyq ¥ ȳ

and t̂3pȳq ¥ y, and if switching occurs prior to time T.

t

Panel (a): t̂py, ȳq � t̂1py, ȳq

t

Panel (c): t̂py, ȳq � t̂3pȳq

t

Panel (b): t̂py, ȳq � t̂2pyq

t

Panel (d): t̂py, ȳq ¡ T

y ȳ t̂1py, ȳq T ȳ t̂3pȳq y T

y t̂2pyq ȳ T ȳ y T t̂3py, ȳq

L 0 H L H

L 0 H L 0

Figure 3.4: Stage game payoffs for every possible case. Panel numbering corresponds to
equations in (3.22).

Another possibility is that myopic players switch after observing only one

sophisticated player switching to A, a case illustrated in panel (b). Then the

7Panel (a) illustrates the situation with y   ȳ, but the payoff calculation for y ¥ ȳ would be
equivalent.
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sophisticated player will receive a payoff flow equal to L at any time prior to y,

a flow of 0 between time y and t̂2pyq and a flow of H between t̂2pyq and T. The

sum of payoffs in this case would be equal to Π2py, ȳq � yL � pT � t̂2pyqqH.

Panel (b) applies only if t̂2pyq   ȳ.

In a similar way, pn�m�1q sophisticated players may switch first, followed

by myopic players and then by a single sophisticated player, illustrated in panel

(c). Sophisticated player would receive L until time y, and would receive H

afterwards. The sum of payoffs would therefore be equal to Π3py, ȳq � yL �
pT � yqH. Panel (c) applies only if t̂3pȳq   y.

Finally, myopic players may never switch to A, as illustrated in panel (d). In

this case the sophisticated player would receive L until time y, and 0 afterwards,

thus the total payoff would be Π4py, ȳq � yL.

�

3.3.6 Characterisation of Symmetric Sophisticated Player
Equilibria

Payoffs for each strategy of player s and the strategies of other sophisticated

players are specified in (3.22). This specification transforms a repeated game

into a static game played by sophisticated players, who are able to perfectly

anticipate the choice path of myopic players. To make theoretical predictions,

we can use the standard solution concept for static games – a Nash equilibrium

– which requires mutual best responses for each player.

Proposition 2 shows that undominated action plans for sophisticated players

can be identified by a strategy that identifies a switching time. We will there-

fore use the definition from (3.5) to call a combination of strategies py�, y�q a

symmetric sophisticated player equilibrium if it satisfies:

Πpy�, ȳ�q ¥ Πpy, ȳ�q, @y P r0, T s (3.23)

and y� � ȳ�

We will look at the existence of three types of equilibria: interior solutions with

y � ȳ P p0, T q, a corner solution with y � ȳ � 0 and a corner solution with

y � ȳ � T . For each type we will determine the conditions under which an

equilibrium exists, and the speed of transition to an efficient state.

3.3.6.1 Interior Sophisticated Player Equilibria

In this section we will derive the existence conditions for an interior equilibrium

and show how the speed of transition to the efficient equilibrium depends on

the game parameters.
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Proposition 5. A combination of strategies py�, y�q with y� P p0, T q is a so-

phisticated player equilibrium (“interior equilibrium”) if and only if conditions

I1, I2, I3 and I4 are satisfied:

t̂1py�, y�q   T , (I1)

logpn�m�H{L

I�1pn�1q
q

logpγq
� T 1 ¡ 0, (I2)

t̂1py�, y�q � y�L{H ¤ t̂2p0q, (I3)

t̂1py�, y�q � y�L{H ¤ T p1� L{Hq, (I4)

where equilibrium strategies are calculated by

y� �
logpn�m�H{L

I�1pn�1q
q

logpγq
� T 1

Proof.

The structure of the proof is shown in figure 3.5. First we need to specify

the equilibrium payoffs. If condition I1 holds, condition (3.22a) will hold as

well, from Lemma 10, therefore Πpy�, y�q � Π1py�, y�q. If I1 does not hold,

Πpy�, y�q � Π4py�, y�q � y�L, and an interior equilibrium will not exist because

there is a profitable deviation to a strategy y � T that provides a payoff of TL.

Condition I1 is therefore the first necessary condition for the existence of an

interior equilibrium, and we will show that it is also jointly sufficient, together

with conditions I2, I3 and I4. These proofs are given in additional lemmas.

Lemma 4 shows that equilibrium payoffs exceed deviation payoffs if and only

if equilibrium payoffs exceed the payoffs of two endpoints, 0 and T , and the

payoffs of ‘neighboring’ strategies, calculated by Π1py, y�q. Lemma 5, 6 and 7

derive the conditions under which there are no profitable deviations for each

case.

Lemma 4.

Π1py�, y�q ¥ Πpy, y�q,@y P r0, T s ô

$&% Π1py�, y�q ¥ Π2p0, y�q
Π1py�, y�q ¥ Π1py, y�q,@y P ry2, y1s
Π1py�, y�q ¥ Π4pT, y�q

If t̂3py�q ¤ T , y1 � t̂3py�q, otherwise y1 solves t̂1py1, y�q � T . If t̂2p0q ¡ y�,

y2 � 0, otherwise y2 solves t̂2py2q � y�.

Proof: see Appendix 3.A.2.
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Πpy�, y�q ¥ Πpy, y�q,@y P r0, T s Π4py�, y�q ¥ Π4py, y�q,@y P r0, T s

Π1py�, y�q ¥ Πpy, y�q,@y P r0, T s

$&% Π1py�, y�q ¥ Π1py, y�q,@y P py2, y1q
Π1py�, y�q ¥ Π2p0, y�q
Π1py�, y�q ¥ Π4pT, y�q

I2
I3
I4

if not I1

if I1

Lemma 4

Lemma 5

Lemma 6

Lemma 7

Figure 3.5: Structure of the proof for Proposition 5.

Lemma 5. Π1py�, y�q ¥ Π1py, y�q, @y P py2, y1q, if and only if condition I2

is satisfied:

logpn�m�H{L

I�1pn�1q
q

logpγq
� T 1 ¡ 0, pI2q

Proof: see Appendix 3.A.2.

Lemma 5 specifies conditions under which there are no profitable deviations

to strategies in the interval ry2, y1s. In addition, equilibrium payoffs must be

higher than the payoffs from choosing y � 0 and y � T . Conditions under which

there are no incentives to deviate to such strategies are specified in Lemma 6

and Lemma 7.

Lemma 6. Π1py�, y�q ¥ Π2p0, y�q if and only if condition I3 is satisfied:

t̂1py�, y�q � y�L{H ¤ t̂2p0q, pI3q

Proof: see Appendix 3.A.2.

Lemma 7. Π1py�, y�q ¥ Π4pT, y�q if and only if condition I4 is satisfied:

t̂1py�, y�q � y�L{H ¤ T p1� L{Hq, pI4q

Proof: see Appendix 3.A.2.

Taken together, Lemmas 5, 6 and 7 prove Proposition 5. Conditions I1,

I2, I3 and I4 are jointly sufficient because if all of them are satisfied there are

no incentives to deviate to any strategy in r0, T s. If one of these conditions is

violated, there will be a strategy in some region that exceeds the equilibrium

payoff.

�
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3.3.6.2 Corner Solution y� � 0

In a second type of a symmetric sophisticated player equilibrium all sophisti-

cated players switch to A at the start of the game, so that equilibrium strategies

are y� � y� � 0.

Proposition 6. A combination of strategies p0, 0q is a sophisticated player

equilibrium (“teaching equilibrium”) if and only if conditions T1 and T2 are

satisfied:

n�m�H{L
n� 1

¤ γT
1

I�1, (T1)

t̂1p0, 0q ¤ T p1� L{Hq, (T2)

Proof.

Πp0, 0q ¥ Πpy, 0q,@y P r0, T s Π4p0, y�q ¥ Πpy, y�q,@y P r0, T s

Π1p0, 0q ¥ Πpy, 0q,@y P r0, T s

"
Π1p0, 0q ¥ Π1py, 0q,@y P r0, y1q
Π1p0, 0q ¥ Π4pT, 0q

T1
T2

if t̂1p0,0q¡T

if t̂1p0,0q¤T

Lemma 8

Lemma 9

Figure 3.6: Structure of the proof for Proposition 6.

Structure of the proof is shown in figure 3.6 and is similar to the proof of

the interior equilibrium. The teaching equilibrium exists if (3.23) is satisfied

for y� � 0:

Πp0, 0q ¥ Πpy, 0q, @y P r0, T s

If t̂1p0, 0q ¡ T , condition (3.22d) is satisfied and equilibrium payoffs are

determined by Πp0, 0q � Π4p0, 0q � 0, while deviation payoffs are determined

by Πpy, 0q � yL. Then a teaching equilibrium would not exist because there

is a profitable deviation to strategy y � T that provides a payoff of TL. If

t̂1p0, 0q ¤ T , equilibrium payoffs are calculated by Π1p0, 0q. Condition t̂1p0, 0q ¤
T is therefore necessary for the existence of an interior equilibrium. We do not

list this condition separately because it is implied by T2.

Deviation payoffs are determined in a similar way to the deviation payoffs for

an interior equilibrium. Payoffs for a small y P r0, t1s are calculated by Π1py, 0q,
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where y1 solves t̂1py1, 0q � T . If the deviation is larger, that is y P rt1, T s, myopic

player would never switch to A and deviation profits would be calculated by

Π4py, 0q � yL. All strategies in this interval would be dominated by strategy

y � T that provides a payoff of TL. Overall, there are two requirements

that need to be satisfied for a teaching equilibrium to exist. First, equilibrium

payoffs should be higher than the payoffs from any other y P r0, y1q, calculated

by Π1py, 0q. We will derive the conditions under which this requirement is

satisfied in Lemma 8. Second, equilibrium payoffs should be higher than the

payoff of strategy y � T ; we will derive the conditions for this requirement in

Lemma 9.

Lemma 8. Π1p0, 0q ¥ Π1py, 0q, @y P r0, y1q if and only if condition T1 is

satisfied:

n�m�H{L
n� 1

¤ γT
1

I�1 (T1)

where y1 solves t̂1py1, 0q � T .

Proof: see Appendix 3.A.2.

Lemma 9. Π1p0, 0q ¥ Π4pT, 0q if and only if condition T2 is satisfied:

t̂1p0, 0q ¤ T p1� L{Hq (T2)

Proof.

Deviation payoffs are calculated from (3.22d): Π4pT, 0q � TL. There are no

incentives to deviate if

Π1p0, 0q ¥ Π4pT, 0q ô t̂1p0, 0q ¤ T p1� L{Hq

�

If both T1 and T2 hold, equilibrium payoffs are calculated by Π1p0, 0q and

there are no incentives to deviate neither to neighbouring strategies nor to

strategy y � T . If one of these conditions is violated, there would be profitable

deviation and a teaching equilibrium would not exist.

�

3.3.6.3 Corner Solution y� � T

In the third type of a symmetric sophisticated player equilibrium all sophisti-

cated players choose B for the entire duration of the game, that is y� � ȳ� � T .
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Proposition 7. A combination of strategies pT, T q is a sophisticated player

equilibrium (“delay equilibrium”) if and only if condition D1 is satisfied:

t̂2p0q ¥ T p1� L{Hq (D1)

Proof.

ΠpT, T q ¥ Πpy, T q,@y P r0, T s

Π4pT, T q ¥ Πpy, T q,@y P r0, T s

"
Π4pT, T q ¥ Π2p0, T q
Π4pT, T q ¥ Π4py, T q,@y P ry1, T s

D1
Always satisfied

Figure 3.7: Structure of the proof for Proposition 7.

If there is a symmetric equilibrium with y� � T , it must hold that:

ΠpT, T q ¥ Πpy, T q, @y P r0, T s

The structure of the proof is shown in figure 3.7. Condition (3.22d) is

satisfied, therefore equilibrium payoffs are ΠpT, T q � Π4pT, T q � TL. Deviation

payoffs Πpy, T q are calculated either as Π4py, T q if y P ry1, T s or as Π2py, T q if

y P r0, y1q, where y1 solves t̂2py1q � T . In the former case Π4py, T q � yL, which

is less that the payoff of TL provided by strategy y � T , therefore the delay

equilibrium would exist. In the latter case deviation payoffs are equal to:

Πpy, T q � Π2py, T q � yL� pT � t̂2pyqqH

Lemma 3 implies that argmaxypΠ2py, T qq � 0, that is the most profitable

deviation is to strategy y � 0. There will be no incentives to deviate to this

strategy if the following holds:

Π4pT, T q ¥ Π2py, T q ô

TL ¥ pT � t̂2p0qqH ô

t̂2p0q ¥ T p1� L{Hq

If this condition is satisfied, there will be no incentives to deviate to y � 0 and

there would be no other profitable deviations, therefore a delay equilibrium

would exist. If this condition is not satisfied, payoffs could be increased by

choosing strategy y � 0.

�
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3.4 Summary and Comparative Statics

Overall, three types of symmetric Nash equilibria can exist: in a “teaching”

equilibrium all sophisticated players play A for the entire duration of the game

and myopic players switch to A at some time t̂1p0, 0q; in a “delay” equilibrium all

sophisticated players choose B for the entire duration of the game, and myopic

players never switch to A; in an interior equilibrium sophisticated players start

by playing B and switch to A at time y� while myopic players switch to A

at time t̂1py�, y�q. Table 3.1 summarizes all the conditions that need to be

satisfied for each type of equilibrium to exist. Depending on the combination

of parameters, it is possible that multiple equilibria will exist at the same time

or that no symmetric equilibrium will exist.

We would like to make theoretical predictions about how the path of play

depends on the game parameters, but precise predictions cannot be made due

to the multiplicity of equilibria. Therefore we separately investigate how the

factors of interest affect the existence conditions of each type of equilibria and

the speed of transition to an efficient state. The factors that we consider are the

length of planning horizon of sophisticated players (T ), the number of myopic

players (m) and the strength of initial lock-in (T 1).

3.4.1 Planning Horizon of the Sophisticated Players

The first parameter of interest is T , the length of the planning horizon for

sophisticated players.

Proposition 8. If sophisticated players have a longer planning horizon, then:

1. The speed of transition in any equilibrium is not affected.

2. Teaching equilibrium exists for a larger set of values of other parameters.

3. Interior equilibrium exists for a larger set of values of other parameters.

4. Delay equilibrium exists for a smaller set of values of other parameters.

Proof.

Part 1 follows from the definition of the switching period, which depends

only on myopic players who do not take future payoffs into account. For part 2,

note that only condition T2 depends on the planing horizon, and T2 is satisfied

for a larger set of parameters when T is higher. For part 3, note that conditions

I2 and I4 depend on the length of the planning horizon, and both are satisfied

for a larger set of parameters when T is larger. Part 4 holds because condition

D1 is satisfied for a smaller set of parameters when T is larger.
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�

3.4.2 Player Composition

The second variable of interest is m, the number of myopic players, which

reflects a different aspect of sophistication than the length of the planning

horizon. Instead of making sophisticated players more sophisticated, we look

at the effect of replacing some myopic players with sophisticated ones, while

keeping the total number of players constant.

Proposition 9. If there are more sophisticated players, then:

1. Transition is faster in the interior and in the teaching equilibria.

2. The effect on the existence of a teaching equilibrium or an interior equi-

librium is ambiguous:

(a) there are more incentives to deviate to neighboring action plans

(b) there are less incentives to never choose A.

3. There is no change in the existence of the delay equilibrium.

Proof.

This proof as well as other proofs on comparative statics rely on additional

lemmas presented in Appendix 3.A.3. For part 1, see Lemmas 11 and 12. To see

part 2 for the teaching equilibrium, note that both condition T1 and condition

T3 depend on player composition. A smaller number of myopic players leads

to T1 being satisfied for a smaller set of values of other parameters. On the

other hand, a smaller number of myopic players makes condition T2 satisfied

for a larger set of parameters because t̂1p0, 0q is increasing in m (see Lemma

11). For the interior equilibrium, all four conditions depend on the number

of sophisticated players. Incentives to deviate to neighbouring strategies are

determined by condition I2, which is satisfied for a smaller set of parameters

when there are more sophisticated players. To see it, notice that By�

Bm
¡ 0

(Lemma 12), therefore as m decreases so does y�, therefore I2 is less likely to be

satisfied. Incentives to deviate to corner solutions are determined by conditions

I1, I3 and I4, all of which are satisfied for a larger set of parameters when

there are more sophisticated players. Conditions I3 and I4 are satisfied for a

larger set of parameters because Bt̂1py
�,y�q

Bm
¡ By�

Bm
¡ By�

Bm
L{H (see Lemma 14).

Condition I1 is also satisfied for a larger set of parameters because Bt̂1py
�,y�q

Bm
¡ 0,

from Lemma 12. Part 3 holds because outcomes in the delay equilibrium are

not affected by the number of myopic players. �
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The finding that an increase in the number of sophisticated players can

reduce the incentives to use strategic teaching may sound counterintuitive, but

it is a result of decreased delay costs as the number of teaching players grows.

When the number of sophisticated players is large and all of them are choosing

A in the teaching equilibrium, the decision of a single sophisticated player

to delay teaching has only a small negative effect on the transition period,

making free-riding an attractive alternative that could lead to a break-down

of a teaching equilibrium. But if a teaching equilibrium does exist, a larger

number of sophisticated players would make transition faster.

3.4.3 Length of the History of Inefficient Coordination

The third factor that we look at is the strength of the initial lock-in to an

inefficient state, measured by the length of history of inefficient coordination,

T 1.

Proposition 10. If the history of inefficient coordination is longer, then:

1. Transition is slower in the teaching equilibrium but faster in an interior

equilibrium.

2. Teaching equilibrium exists for a smaller set of parameter values

3. The effect on the existence of an interior equilibrium is ambiguous

4. Delay equilibrium exists for a smaller set of parameter values.

Proof.

Part 1 holds because the derivative of t̂1p0, 0q with respect to T 1 is positive

while the derivative of t̂1py�, y�q is negative, as shown in Lemma 11 and Lemma

12. For part 2, parameter T 1 affects conditions T1 and T2. An increase in T 1

leads to T1 being satisfied for a smaller set of parameter values, because γT
1

goes down. Condition T2 is also less likely to be satisfied because of an increase

in t̂1p0, 0q. For part 3, notice that an increase in T 1 satisfies conditions I1, I3

and I4 for a larger set of parameter values, but satisfies condition I2 for a

smaller set of parameter values. Condition I1 is satisfied for a larger set of

parameter values because Bt̂1py
�,y�q

BT 1   0. Conditions I3 and I4 are also satisfied

for a larger set of parameter values because Bt̂1py
�,y�q

BT 1 � By�

BT 1  
By�

BT 1 L{H and
t̂2p0q

BT 1 ¡ 0, from Lemma 11, 12 and 13. Condition I2 is satisfied for a smaller set

of parameters because By�

BT 1   0, from Lemma 14.

�
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Part 1 of Proposition 10 states that the history of inefficient coordination

affects the transition speed in opposite ways in the teaching and in the interior

equilibrium. The opposite sign of this effect is a result of changes of the equi-

librium strategy in the interior equilibrium. If the equilibrium strategy in an

interior equilibrium was held constant, a longer history of inefficient coordina-

tion would lead to a slower transition. However, to offset an increased history

of inefficient coordination, in an equilibrium sophisticated players have to start

teaching earlier. Lemma 12 shows that the latter effect is even stronger than

the former.

3.5 Conclusion

In this chapter we present a model that combines the standard game-theoretic

view of players who are strategic and farsighted with the idea that players best

respond to beliefs that are formed using the observed history of play. We assume

two types of players: myopic players make choices based on observed history

of play while sophisticated players have correct beliefs about the actions of all

other players, plan ahead and choose actions that maximize the sum of payoff

flows. To make predictions in this modified game we propose a new solution

concept based on a Nash equilibrium between sophisticated players who take

the learning process of the myopic players into account.

This solution concept is applied to a critical mass coordination game in which

play has converged to an inefficient equilibrium. The construction of a sophisti-

cated player equilibrium involves several steps. Proposition 1 shows that myopic

players will choose the efficient action if their beliefs exceed a certain threshold.

Furthermore, in the sophisticated player equilibrium myopic players will switch

from an inefficient to the efficient action at most once. The single switch and

the assumption that there are sufficiently many myopic players means that the

efficient state is absorbing, therefore the switching time is the only information

needed for sophisticated players to calculate their payoffs. Proposition 3 shows

exactly how the switching time of myopic players can be calculated if beliefs

were formed using weighted fictitious play. The switching time depends on the

strategies taken by sophisticated players, which could prescribe many switches

from one action to the other. The task of finding the switching time of the my-

opic players is therefore greatly simplified by Proposition 2, which shows that

only the sophisticated player strategies prescribing at most one switch from the

inefficient to the efficient action survive the elimination of strictly dominated

strategies, allowing a strategy to be identified by the switching time.
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The ability to anticipate the speed of a transition allows sophisticated play-

ers to calculate how their payoffs depend on their own strategies and on the

strategies chosen by other sophisticated players. The mapping from strate-

gies to payoffs specified in Proposition 4 is used to identify strategy profiles in

which all sophisticated players are best responding to each other. Three types of

symmetric equilibria are possible: sophisticated players may play the efficient

action right away, they may switch to the efficient action later or they may

never switch. In the first two cases myopic players eventually start playing the

efficient action, while in the third case all players choose the inefficient action.

Which types of equilibria exist and how long the transition to an efficient state

takes depends on the game parameters, as specified in Propositions 5, 6 and

7. Finally, Propositions 8, 9 and 10 show how these existence conditions de-

pend on the history of inefficient coordination, length of the planning horizon

of sophisticated players and the player composition. As the planing horizon

of sophisticated players increases, teaching and interior equilibria exist for a

larger set of parameters, while the delay equilibrium exists for a smaller set of

parameters. A larger number of sophisticated players leads to faster transition

to the efficient state in an interior or in a delay equilibrium, but the effect

on the existence conditions is ambiguous: there are more incentives to deviate

to neighboring strategies, but less incentives to deviate to corner solutions. Fi-

nally, we show that a longer history of observed inefficient coordination leads to

a slower transition in a teaching equilibrium and to a smaller set of parameters

under which a teaching equilibrium exists, while the set of parameters under

which the delay equilibrium exists is larger. On the other hand, the transition

to an efficient state in an interior equilibrium is faster, because a longer history

of inefficient coordination forces sophisticated players to start teaching earlier.

The problem that motivated this chapter was the lack of a suitable theoreti-

cal model that could be used to make predictions in a game in which inefficient

conventions have already been established. A small change in the assumptions

– instead of assuming all players to be farsighted we assume that some players

are learning from history – leads to a large differences in theoretical predictions.

Not only can the new model be used to model inefficient conventions through

the beliefs of myopic players, but it also reduces the set of predictions to only

three types of equilibria, in contrast to almost limitless predictions made by the

standard Nash equilibrium.
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Appendix 3

3.A Proofs

3.A.1 Case 2 and Case 3 of Proposition 3

Case 2: y   t̂   ȳ

t
-T’ 0 y ȳt̂py, ȳq T

B

B A

B A

B A

pm� 1q myopic players

1 sophisticated player

pn�m� 1q

sophisticated players

Figure 3.8: Illustration of the second case, where y   t̂py, ȳq ¤ ȳ. The height of the figure
shows the fraction of players choosing action A or action B, the width shows the passage
of time. The first sophisticated player switches from B to A in period y, other (n-m-1)
sophisticated players switch in period ȳ and the myopic players switch in period t̂.

The second possibility is that t̂py, ȳq ¤ ȳ, that is myopic players switch to A

earlier than pn�m� 1q sophisticated players. In this case the actual value of

ȳ will have no influence on the switching period of myopic players, as they will

never observe any of the pn�m�1q sophisticated players choosing A. Therefore

the switching period will be a function only of the strategy chosen by a single

sophisticated player. At time t P py, t̂s beliefs of a myopic player i are xiptq:

xiptq �

³t�y
k�0

γkp 1
n�1

qdk³t�T 1

k�0
γkdk

�

�
pγt�y � 1qp 1

n�1
q

γt�T 1 � 1

Player i will choose A in t if:

xiptq ¥ I�1 ô

γt�T
1

pγ�y�T
1 1

n� 1
� I�1q ¤

1

n� 1
� I�1 (3.24)

If 1
n�1

� I�1 ¤ 0, equation (3.24) is never satisfied. To see this, notice the

following relationship that contradicts (3.24):
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γt�T
1

pγ�y�T
1 1

n� 1
� I�1q ¡ γt�T

1

p
1

n� 1
� I�1q ¥

1

n� 1
� I�1

The latter equation holds because γ�y�T
1

¡ 1, γt�T
1

  1 and 1
n�1

� I�1 ¤ 0.

Alternatively, if 1
n�1

� I�1 ¡ 0, (3.24) will be satisfied with equality at time

t̂2pyq P p0,8q that satisfies:

γ�t̂2pyq �
γ�y 1

n�1
� γT

1

I�1

1
n�1

� I�1
ô

t̂2pyq �
logp 1

n�1
� I�1q � logpγ�y 1

n�1
� γT

1

I�1q

logpγq
(3.25)

t̂py, ȳq can be calculated using (3.25) only if 1
n�1

�I�1 ¡ 0, otherwise myopic

players would never switch from A to B. The switching period if case 2 applies

can be expressed as follows:

t̂py, ȳq �

"
t̂2pyq if 1

n�1
� I�1 ¡ 0

8 otherwise
(3.26)

Case 3: ȳ   t̂   y

t
-T’ 0 yȳ t̂py, ȳq T

B

B A

B A

B A

pm� 1q myopic players

1 sophisticated player

pn�m� 1q

sophisticated players

Figure 3.9: Illustration of the third case, where ȳ   t̂py, ȳq ¤ y. Height of the figure shows a
fraction of players choosing action A or action B, the width shows the passage of time. The
first sophisticated player switches from B to A in period y, other pn�m� 1q sophisticated
players switch in period ȳ and myopic players switch at time t̂py, ȳq.

The third possibility is that ȳ   t̂py, ȳq ¤ y, that is at first pn � m � 1q
sophisticated players switch to A, then m myopic players switch and the last

sophisticated player may switch some time after the myopic ones. In this case

the switching time is a function only of ȳ. At time t P pȳ, t̂py, ȳqs beliefs of a
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myopic player i are xiptq:

xiptq �

³t�ȳ
k�0

γkpn�m�1
n�1

qdk³t�T 1

k�0
γkdk

�

�
pγt�ȳ � 1qpn�m�1

n�1
q

γt�T 1 � 1

Player i will choose A in t if:

xiptq ¥ I�1 ô

γt�T
1

pγ�ȳ�T
1 n�m� 1

n� 1
� I�1q ¤

n�m� 1

n� 1
� I�1 (3.27)

If n�m�1
n�1

� I�1 ¤ 0, condition (3.27) is never satisfied. To see this, notice

the following relationship that contradicts (3.27):

γt�T
1

pγ�ȳ�T
1 n�m� 1

n� 1
� I�1q ¡ γt�T

1

p
n�m� 1

n� 1
� I�1q ¥

n�m� 1

n� 1
� I�1

The latter conditions holds because γ�ȳ�T
1

¡ 1, γt�T
1

  1 and n�m�1
n�1

�I�1 ¤ 0.

Therefore if n�m�1
n�1

� I�1 ¤ 0, equation (3.27) is never satisfied and myopic

players would choose B at any time t.

Alternatively, if n�m�1
n�1

� I�1 ¡ 0, (3.27) will be satisfied with equality at

time t̂3pyq P p0,8q that satisfies:

γ�t̂3pȳq �
γ�ȳ n�m�1

n�1
� γT

1

I�1

n�m�1
n�1

� I�1
ô (3.28)

t̂3pȳq �
logpn�m�1

n�1
� I�1q � logpγ�ȳ n�m�1

n�1
� γT

1

I�1q

logpγq
(3.29)

t̂py, ȳq can be calculated using (3.29) only if n�m�1
n�1

� I�1 ¡ 0. Therefore,

the switching period if case 3 applies can be expressed as follows:

t̂py, ȳq �

"
t̂3pȳq if n�m�1

n�1
� I�1 ¡ 0

8 otherwise
(3.30)

3.A.2 Proof of Lemmas

Lemma 1: If two action plans of the sophisticated player prescribe the same

action, the payoff flow is higher for the action plan with which myopic player

beliefs are higher:
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πra1sptq, a�sptq � aipt, a1s � a�sqs ¥ πrasptq, a�sptq � aipt, as � a�sqs

if xptq1 ¥ xptq and a1sptq � asptq

where xptq1 is the belief held by myopic players if sophisticated player uses action

plan a1s and xptq is the belief if sophisticated player uses action plan as.

Proof:

Consider two action plans as and a1s that prescribe the same action at time

t, but prescribe different actions prior to time t so that myopic players would

hold higher beliefs following the history generated by a1s.

From equation (3.7), aipt, as � a�sq is weakly increasing in beliefs xiptq,
therefore:

aipt, a1s � a�sq ¥ aipt, as � a�sq

Since we hold the action plans of other strategic players constant, a higher

tendency to choose A by myopic players increases the total number of other

players who choose A at time t. Because H ¡ 0 and M ¥ 0, equation (3.6) im-

plies that payoffs are weakly increasing in the number of other players choosing

A, therefore the payoff generated by a1s must be at least as high as the payoff

generated by as:

πra1sptq, a�sptq � aipt, a1s � a�sqs ¥ πrasptq, a�sptq � aipt, as � a�sqs

�

Lemma 2: All action plan profiles for sophisticated players with which

myopic players switch from A to B are strictly dominated:

ABM X Us � H

Proof.

Suppose that �sPSas P ABM , then there are two points in time t1 and t2
with t1   t2 such that myopic players choose A at time t1 and B at time t2 .

Find the first switching period ts P pt1, t2s such that A is chosen in the interval

rt1, tsq, but B is chosen at time ts. Since all myopic players share the same

history, the value of ts will be the same for each myopic player so no myopic

player will choose A in the interval rt1, tsq. If a myopic player observed all other

sophisticated players choosing A in the interval rt1, tsq, the fictitious play rule

would imply that xiptsq ¥ xipt1q therefore if A was optimal at time t1 it will

also be optimal at time ts, contradicting the definition of ts. Therefore if a

myopic player chooses B at time ts, at least one sophisticated player must be
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choosing B in the interval rt1, tsq, that is asptq � 0 for some s P S and t P rt1, tsq.
Denote the action plan of this sophisticated player by ras. We will show thatras is dominated by an action plan a1s that prescribes A in the entire interval

rt1, tsq and is otherwise the same as ras. First, the sum of payoff flows generated

by a1s in the interval rt1, tsq is strictly higher than that generated by ras because

all myopic players are choosing A in this interval, and therefore Assumption 2

implies that the threshold will be exceeded. Second, payoffs generated in the

interval pts, T s will be equal or higher than those of ras because myopic players

will hold higher beliefs if a1s is chosen (due to more A choices being observed)

and consequently Lemma 1 implies that higher beliefs will lead to weakly higher

payoffs for the sophisticated player at any time t ¡ ts.

�

Lemma 3: Bt̂2pyq

By
¡ 1.

Proof.

Use the definition of t̂2pyq from equation (3.25):

t̂2pyq �
logp 1

n�1
� I�1q � logpγ�y 1

n�1
� γT

1

I�1q

logpγq

The partial derivative is calculated as follows:

Bt̂2pyq
By

�
1

� logpγq
�

1

γ�y 1
n�1

� γT 1I�1
� γ�y

�1

n� 1
logpγq �

�
γ�y 1

n�1

γ�y 1
n�1

� γT 1I�1
¡ 1

�

Lemma 4:

Π1py�, y�q ¥ Πpy, y�q,@y P r0, T s ô

$&% Π1py�, y�q ¥ Π2p0, y�q
Π1py�, y�q ¥ Π1py, y�q,@y P ry2, y1s
Π1py�, y�q ¥ Π4pT, y�q

If t̂3py�q ¤ T , y1 � t̂3py�q, otherwise y1 solves t̂1py1, y�q � T . If t̂2p0q ¡ y�,

y2 � 0, otherwise y2 solves t̂2py2q � y�.

Proof. To specify the deviation payoff, Πpy, y�q, we will first look at de-

viations upwards (y ¡ y�) and then at deviations downwards (y   y�). First,

consider a deviation upwards to a strategy y � yD ¡ y�. The calculation of

payoff ΠpyD, y�q depends on the size of the deviation: if yD is sufficiently small,

the payoff is determined by ΠpyD, y�q � Π1pyD, y�q, but if y is large, myopic

players may switch to A prior to y (see an illustration in figure 3.10, panel

a), or myopic players may never switch to A (figure 3.10, panel b). The first
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option is possible only if the myopic players switch to A without ever observ-

ing player s choose A, that is if t̂3py�q   T . Then the deviation payoffs for

an action plan yD P pt̂3py�q, T s are calculated by Π3pyD, y�q. But Π3py, y�q is

decreasing in y, thus any strategy in this interval would be strictly dominated

by strategy y � t̂3py�q. In figure 3.10 we indicate dominance with an arrow

pointing towards the dominant strategy. Checking for profitable deviations up-

wards therefore only requires checking for potential deviations in the interval

py�, t̂3py�qs. Also note that yD ¤ t̂3pȳq together with condition I1 imply that

deviation payoffs for strategies yD P p0, t̂3pȳqq are equal to Π1pyD, y�q.

The second possibility is that t̂3py�q ¥ T , so that myopic players do not

switch prior to T if they observe only n�m�1 sophisticated players switching at

y� (see figure 3.10, panel b). Then because t̂1pT, y�q � t̂3py�q ¡ T , t̂1py�, y�q  
T (from condition I1) and t̂1p�, y�q is continuous, there must be a number

y1 P py�, T q such that t̂1py1, y�q � T . If yD P py�, y1s, (3.22a) is satisfied and

ΠpyD, y�q � Π1pyD, y�q, because t̂1py, y�q ¤ T , t̂2pyDq ¡ yD ¡ y� and t̂3py�q ¡
T ¡ y�. The payoff from any yD ¡ y1 is determined by Π4py, y�q � yL, and

thus all strategies yD P py1, T s are dominated by yD � T . Overall, to check for

the existence of an interior equilibrium it is sufficient to compare equilibrium

payoffs to the payoffs from yD P py�, y1q Y T .

yD

Panel (a): t̂3py
�q ¤ T

ΠpyD, y
�q �

yD

Panel (b): t̂3py
�q ¡ T

0 y2 y� t̂3pȳq T 0 y2 y� y1 T

Π2pyD, y
�q Π1pyD, y

�q Π3pyD, y
�q Π2pyD, y

�q Π1pyD, y
�q Π4pyD, y

�q

Figure 3.10: Calculation of deviation payoffs, ΠpyD, y
�q for every possible value of yD. Green

dashed line and green ticks mark undominated strategies. Red arrows mark dominated
strategies and the arrow points to the dominant strategy.

Now consider a possible deviation downwards to yD   y�. If yD is only

slightly below y�, the switching period is t̂1pyD, y�q and the deviation payoffs

are Π1pyD, y�q. But if yD is low enough, myopic players may switch to A

prior to y�, at time t̂2pyDq. If this does not happen, that is if t̂2p0q ¡ y�,

payoffs from all deviations downwards are calculated by Π1pyD, y�q. Otherwise,

if t̂2p0q ¤ y�, there will be some value y2 that satisfies t̂2py2q � y�. For any y

below this value, payoffs will be determined by Π2py, y�q. From Lemma 3, any

y P p0, y2q is dominated by y � 0, therefore to check if there are any profitable

deviations downwards it is necessary to compare equilibrium payoffs to payoffs

from strategies yD P py2, y�q Y 0.

�
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Lemma 5: Π1py�, y�q ¥ Π1py, y�q, @y P py2, y1q, if and only if condition

I2 is satisfied:

logpn�m�H{L

I�1pn�1q
q

logpγq
� T 1 ¡ 0, pI2q

Proof.

We will calculate the first derivative of the profit function and deter-

mine under what conditions the derivative at the equilibrium point is equal

to 0 and the second derivative is is non-positive, which ensures that the

equilibrium is a maximum point and there are no incentives to deviate to

strategies in the nearest neighbourhood. Instead of taking the derivative

of the profit function, we will first transform it by applying a strictly in-

creasing function �γp�{Hq, which preserves the sign of the derivative when

γ P p0, 1q. The transformed payoff function is calculated as follows:

�γΠpy,y�q{H � �γyL{H�Tγ�t̂1py,y
�q �

�
1

I�1 � n�m
n�1

pγypL{H�1q�T 1

n� 1
� γyL{H�T�y� n�m� 1

n� 1
� γyL{H�T�T 1

I�1q �

�
γyL{H�T

I�1 � n�m
n�1

pγ�y
1

n� 1
� γ�y

� n�m� 1

n� 1
� γT

1

I�1q (3.31)

where γ t̂1py,y�iq has been substituted from (3.19). Differentiate

the transformed profit function in (3.31) with respect to y to get

B � γΠpy,y�q{H

By
�

logpγq
I�1 � n�m

n�1

� pγyL{H�T�y 1

n� 1
pL{H � 1q�

� γyL{H�T�y� n�m� 1

n� 1
L{H � γyL{H�T�T 1

I�1L{Hq �

�
logpγqγyL{H�T

I�1 � n�m
n�1

�
γ�y

1

n� 1
pL{H � 1q � γ�y

� n�m� 1

n� 1
L{H � γT

1

I�1L{H



(3.32)

The first derivative is non-negative if:

B � γΠpy,y�q{H

By
¥ 0 ô

γ�y
L{H � 1

n� 1
� γ�y

� n�m� 1

n� 1
L{H � γT

1

I�1L{H ¥ 0 ô

γ�y ¤
γ�y

�

pn�m�1
n�1

q � γT
1

I�1

H{L�1

n�1

(3.33)

The first derivative at point y � y� is non-negative if:
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B � γΠpy,y�q{H

By

�����
y�y�

¥ 0 ô

γ�y
�H{L� 1

n� 1
¤ γ�y

�

p
n�m� 1

n� 1
q � γT

1

I�1 ô

γT
1�y� ¤

n�m�H{L
I�1pn� 1q

ô

y� ¥
logpn�m�H{L

I�1pn�1q
q

logpγq
� T 1 (3.34)

The derivative is equal to 0 only if y� satisfies (3.34) with equality:

y� �
logpn�m�H{L

I�1pn�1q
q

logpγq
� T 1 (3.35)

There will be at most one y� that satisfies (3.35) for any given set of param-

eters, therefore there can be at most one interior equilibrium in a given game,

and the equilibrium strategy is determined by equation (3.35). A necessary con-

dition for the existence of an interior equilibrium is 0   y�   T . But note that

condition I1 from Proposition 5 implies that y�   T because y�   t̂1py�, y�q,
therefore the only separate condition is that y� ¡ 0.

Condition I2:
logpn�m�H{L

I�1pn�1q
q

logpγq
� T 1 ¡ 0

The second derivative is obtained by differentiating (3.32) with respect to y:

B2 � γΠpy,y�q{H

By2
�

logpγq2γyL{H�T

I�1 � n�m
n�1

� pγ�y
1

n� 1
pL{H � 1q2�

� γ�y
� n�m� 1

n� 1
pL{Hq2 � γT

1

I�1pL{Hq2q (3.36)

The second order derivative is negative if:

B2 � γΠpy,y�q{H

By2
  0 ô

γ�y
1

n� 1
pL{H � 1q2 � γ�y

� n�m� 1

n� 1
pL{Hq2 � γT

1

I�1pL{Hq2 ¡ 0 (3.37)

If condition I2 is satisfied, the expression of y� in (3.35) can be used to

rewrite (3.37) as follows:

γy
��y ¡

L

L�H
(3.38)
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Because L   H and γ P p0, 1q, condition (3.38) is satisfied for all y. The

first order condition is therefore both necessary and sufficient for y � y� to

be a local maximum point. Moreover, equation (3.38) states that the second

derivative is negative not only at y � y�, but also for any other value of y.

Since the first derivative is equal to 0 at point y � y�, and it is decreasing at all

y, the payoff function must be increasing at any point y   y� and decreasing

at any point y ¡ y�. Continuity of the profit function therefore implies that

y � y� is not only a local, but also a global maximum in the interval py2, yq as

long as condition I2 is satisfied.

�

Lemma 6: Π1py�, y�q ¥ Π2p0, y�q if and only if condition I3 is satisfied:

t̂1py�, y�q � y�L{H ¤ t̂2p0q, pI3q

Proof.

Use the profit specification in (3.13) to get the following expressions for the

two profit functions:

Π1py�, y�q � yL� pT � t̂1py�, y�qqH

Π2p0, y�q � pT � t̂2p0qqH

There are no incentives to deviate to y � T if the former expression exceeds

the latter:

Π1py�, y�q ¥ Π2p0, y�q ô t̂1py�, y�q � y�L{H ¤ t̂2p0q

�

Lemma 7: Π1py�, y�q ¥ Π4pT, y�q if and only if condition I4 is satisfied:

t̂1py�, y�q � y�L{H ¤ T p1� L{Hq, pI4q

Proof.

From (3.13), deviation payoffs are as follows:

Π4pT, y�q � TL

There are no incentives to deviate to y � T if

Π1py�, y�q ¥ Π4pT, y�q ô t̂1py�, y�q � y�L{H ¤ T p1� L{Hq

�

Lemma 8: Π1p0, 0q ¥ Π1py, 0q, @y P r0, y1q if and only if condition T1 is

satisfied:
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n�m�H{L
n� 1

¤ γT
1

I�1 (T1)

where y1 solves t̂1py1, 0q � T .

Proof.

Payoffs for any y P r0, y1q are calculated the following way, from equation

(3.22a):

Π1py, 0q � yL� pT � t̂1py, 0qqH (3.39)

A necessary condition for the payoff to be maximized at y � 0 is the non-

positive sign of the first derivative of (3.39) with respect to y at y � 0. We

first apply a strictly increasing function �γp�{Hq to the payoff function an then

differentiate the transformed function with respect to y to obtain the following

condition:

B � γΠ1py,0q{H

By
¤ 0 ô

logpγqγT

I�1 � n�m
n�1

� γ�yp
1

n� 1
pL{H � 1q �

n�m� 1

n� 1
L{H � γT

1

I�1L{Hq ¤ 0 ô

γ�y
1

n� 1
pL{H � 1q �

n�m� 1

n� 1
L{H � γT

1

I�1L{H ¤ 0

(3.40)

Inequality (3.40) must hold for y � 0:

B � γΠ1py,0q{H

By

����
y�0

¤ 0 ô

1

n� 1
pL{H � 1q �

n�m� 1

n� 1
L{H � γT

1

I�1L{H ¤ 0 ô

L{H
n�m

n� 1
�

1

n� 1
¤ γT

1

I�1L{H ô

n�m�H{L
n� 1

¤ γT
1

I�1 (3.41)

To obtain the second derivative, differentiate the the left-hand side of (3.40)

with respect to y and simplify to get:

B2 � γΠ1py,0q{H

By2
�

1

n� 1
pL{H � 1qp�1q log γ

Note that the second derivative is always negative because γ ¤ 1 and H ¡ L.

If condition T1 is satisfied, the first derivative will be non-positive at point

y � 0, and it will non-positive for any y P p0, t1q. Payoffs would therefore
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be maximized by choosing y � 0. If T1 does not hold, the first derivative is

positive at point y � 0 and profits could be increased by choosing y ¡ 0.

�

Lemma 10. t̂1py, ȳq ¤ t̂2pyq and t̂1py, ȳq ¤ t̂3pȳq

Proof.

Note that t̂1py, ȳq is increasing both in y and in ȳ, from equation (3.20). If

y is held constant, at any given time t the maximum value of t̂1py, ȳq will be

reached at ȳ � t. Substituting ȳ � t into equation (3.17) reduces it to equation

(3.24), thus maxȳ t̂1py, ȳq � t̂2pyq. Likewise, setting y � t in equation (3.17)

reduces it to equation (3.27), thus maxy t̂1py, ȳq � t̂3pȳq. Therefore t̂1py, ȳq can

never exceed t̂2pyq or t̂3pȳq.

�

3.A.3 Comparative Statics

3.A.3.1 Speed of Transition in the Teaching Equilibrium

We will prove the effect of the parameter changes on the general function

t̂1py, yq, and all results will of course hold for the special case y � 0.

Lemma 11. Speed of transition to the efficient state in a teaching equilibrium

depends on the parameter values the following way:

1. Bt̂1py,yq

By
¡ 0

2. Bt̂1py,yq

Bm
¡ 0

3. Bt̂1py,yq

BT 1 ¡ 0

Proof.

Assume that a teaching equilibrium exists, so that t̂1p0, 0q   T and
n�m
n�1

¡ I�1. We will show how the speed of transition in this type of equi-

librium respond to changes in parameter values. The switching period t̂1py, yq
is calculated using equation (3.20):

t̂1py, yq �
1

� logpγq

�
logpγ�y

n�m

n� 1
� γT

1

I�1q � logp
n�m

n� 1
� I�1q

�
(3.42)

1. Derivative with respect to y:

Bt̂1py, yq
By

�
n�m
n�1

n�m
n�1

� γy�T 1I�1
(3.43)

Bt̂1py,yq

By
¡ 0 because n�m

n�1
¡ I�1 and γ P p0, 1q.
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2. Derivative with respect to m:

Bt̂1py, yq
Bm

� �
1

logpγq
1

n� 1
p

1
n�m
n�1

� I�1
�

1
n�m
n�1

� γT 1�yI�1
q �

� �
1

logpγq
1

n� 1

I�1p1� γT
1�yq

pn�m
n�1

� I�1qpn�m
n�1

� γT 1�yI�1q
(3.44)

Bt̂1py,yq

Bm
¡ 0 because n�m

n�1
¡ I�1 and γ P p0, 1q.

3. Derivative with respect to T’:

Bt̂1py, yq
BT 1

� �
1

logpγq
1

γ�y n�m
n�1

� γT 1I�1
��I�1γT

1

logpγq (3.45)

Bt̂1py,yq

BT 1 ¡ 0 because n�m
n�1

¡ I�1 and γ P p0, 1q.

�

3.A.3.2 Speed of Transition in the Interior Equilibrium

Lemma 12. Speed of transition to the efficient state in an interior equilibrium

depends on the parameter values the following way:

1.
Bt̂1py�, y�q

Bm
¡ 0

2.
Bt̂1py�, y�q

BT 1
� �1

Proof.

Assume that an interior equilibrium exists, so that t̂1py�, y�q   T and
n�m
n�1

¡ I�1. In an interior equilibrium changes in parameter values affect both

the equilibrium strategies of sophisticated players and the switching period of

myopic players, holding the strategies of sophisticated players constant. To

measure the total effect we substitute the expression of y� from equation (3.35)

into (3.42) to obtain the following result:

t̂1py�, y�q �
1

� logpγq

�
log

�
I�1pn� 1qγT

1

n�m�H{L
n�m

n� 1
� γT

1

I�1



� log

�
n�m

n� 1
� I�1


�
�

�
1

� logpγq

�
logpH{Lq � logpγT

1

q � logpI�1q � logpn�m�H{Lq � log

�
n�m

n� 1
� I�1


�

1. Derivative with respect to m:

Bt̂1py�, y�q
Bm

� �
1

logpγq

�
1

n�m�H{L
�

n� 1
n�m
n�1

� I�1

�
(3.46)
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Bt̂1py
�,y�q

Bm
¡ 0 because n�m

n�1
¡ I�1, γ P p0, 1q and n �m �H{L ¡ 0 (if an

interior equilibrium exists).

2. Derivative with respect to T 1:

Bt̂1py�, y�q
BT 1

� �1 (3.47)

�

3.A.3.3 Speed of Transition if One Player is Teaching

Here we will calculate how the parameters of interest affect t̂2p0q, which mea-

sures the transition speed if a single sophisticated player always plays A while

all others play B. This derivative is necessary for Proposition 9 and Proposition

10 because the existence of a delay equilibrium depends on t̂2p0q

Lemma 13. Speed of transition to the efficient state if only one sophisticated

player is choosing A depends on the parameter values the following way:

1.
Bt̂2p0q
Bm

� 0

2.
Bt̂2p0q
BT 1

¡ 0

Proof.

Suppose that t̂2p0q   T , which holds only if 1
n�1

¡ I�1. Then t̂2p0q is

calculated the following way, from expression 3.25:

t̂2p0q �
logp 1

n�1
� I�1q � logp 1

n�1
� γT

1

I�1q

logpγq
(3.48)

1. Derivative with respect to m:

Bt̂2p0q
Bm

� 0 (3.49)

2. Derivative with respect to T 1:

Bt̂2p0q
BT 1

�
γT

1I�1

1
n�1

� γT 1I�1
(3.50)

Bt̂2p0q

BT 1 ¡ 0 because 1
n�1

¡ I�1.

�
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3.A.3.4 Equilibrium Strategies in the Interior Equilibrium

Another variable if interest is the strategy used by sophisticated players in an

interior equilibrium, y�, which has an effect on the existence conditions of the

interior equilibrium.

Lemma 14. The strategies used by sophisticated players in an interior equilib-

rium depend on parameter values the following way:

1.
By�

Bm
¡ 0

2.
By�

BT 1
� �1

In addition:

3.
By�

Bm
 
Bt̂1py�, y�q

Bm

Proof.

Equilibrium strategy is determined by equation (3.35):

y� �
logpn�m�H{L

I�1pn�1q
q

logpγq
� T 1

1. Derivative with respect to m:

By�

Bm
� �

1

logpγq
p

1

n�m�H{L
q (3.51)

By�

Bm
¡ 0 because n�m�H{L ¡ 0 (because an interior equilibrium exists).

2. Derivative with respect to T 1:

By�

BT 1
� �1 (3.52)

3. Comparison to the derivative of t̂1py�, y�q:

Recall the derivative of t̂1py�, y�q from equation (3.46):

Bt̂1py�, y�q
Bm

� �
1

logpγq
p

1

n�m�H{L
�

n� 1
n�m
n�1

� I�1
q

The derivative of y� calculated in (3.51) is strictly lower than the derivative

of t̂1py�, y�q because n�1
n�m
n�1 �I�1 ¡ 0.

�





Chapter 4

Overcoming Coordination
Failure in a Critical Mass
Game: Strategic Motives and
Action Disclosure

4.1 Introduction

This chapter addresses the same problem as chapter 3—convergence to an in-

efficient equilibrium in critical mass games—but uses experiments instead of

theory. Chapter 3 has shown that strategic players could deviate from an

inefficient convention to teach others and increase their own future earnings.

This chapter presents results of an experiment that tests whether players are

actually motivated by such strategic considerations. The strategic teaching hy-

pothesis is tested in several ways. First, an independent task was run to classify

participants according to their ability to anticipate future actions and to test

the prediction that sophisticated players deviate from an inefficient equilibrium

more often than myopic players. Of course, strategic teaching is not the only

possible explanation: we show that heterogeneity in risk preferences, social

preferences and beliefs could also in theory explain heterogeneity in choices,

therefore additional tests were run to elicit these preferences and beliefs. The

second approach to determine whether an action is taken for strategic reasons

relies on an observation that strategic players value their actions not only for

the immediate utility that they generate, but also for the feedback these ac-

tions provide to other group members. Sophisticated players may therefore be

willing to pay to make their actions observable, while players who care only
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about immediate utility would never do so. Disclosures should also follow a

particular pattern: only deviations from an inefficient equilibrium should be

disclosed, while a decision to remain in an inefficient equilibrium should not be.

The second aim of this chapter is to test whether the possibility to dis-

close actions at a lower cost facilitates transitions to an efficient equilibrium.

Knowing whether disclosure costs facilitate transitions may help design poli-

cies to reduce inefficiencies in real life situations. Such knowledge could also

help explain what factors contributed to transitions in the past. For example,

lower disclosure costs could be one mechanism through which information tech-

nology has contributed to the democratization process, a situation that could

be modeled as a game with two alternative states following coordination fail-

ure. Citizens in oppressed countries might take no political action because the

history of no revolts establishes an inefficient convention, as defined by Lewis

(1969) and Young (1996): taking no action is customary (everyone has been

taking no action), expected (everyone expects others to take no action) and

self-enforcing (taking no action is optimal as long as others do so). However,

recent events in Tunisia, Egypt and other countries have shown that protest

movements can be successful, and this success has often been attributed to

information and communication technologies (ICT) that spread at the onset

of the protest movements and were used by many protesters.1 On the other

hand, there is evidence that ICT may also have adverse effects and its role in

mobilizing participants may have been exaggerated.2 Unfortunately, scientific

evidence about the role played by ICT in the democratization process is lacking

and the few studies that do address this question use empirical country-level

data, making the causal relationship hard to establish (see Kedzie, 1997, Best

and Wade, 2009, and a review in Meier, 2011).

In the experiment we seek to implement some features that inhibit revolts

in real world situations. We allow participants to choose between a safe action

(call it “stay out”) with a fixed payoff, and a risky action (call it “revolt”)

that pays a large payoff if sufficiently many group members choose this ac-

tion. Such critical mass games are often used to represent situations faced by

citizens in oppressed countries (Angeletos et al., 2007; Edmond, 2013). Three

1For example, almost half of the protesters in Egypt said that they have taken and shared pictures
or videos of the protests (Tufekci and Wilson, 2012) and social networking services in both Egypt
and Tunisia were primarily used to raise awareness inside the country about the civil movements
(Mourtada and Salem, 2011)

2It has been stated that social media may be a result rather than a cause of discontent with the
regime (Shirky, 2011), online activism may crowd out activism in the streets (Morozov, 2012) and
protests movements are not hampered by attempts to shut down communication channels (Hassan-
pour, 2014). For a broader overview of the debate see Kalathil and Boas (2003), Morozov (2012) or
Lynch (2011).
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outcomes are possible in this game: efficient coordination, when everyone is

revolting, coordination failure, when everyone is staying out, and miscoordi-

nation, when both actions are played by some participants.3 Even though the

situation in which everyone is revolting is preferred by all citizens, it may not be

implemented due to the history of no revolts and imperfect observability of the

actions taken by others. We established an inefficient convention by starting

the game with a high participation threshold, which in similar games leads to

coordination on the inefficient equilibrium (e.g. Brandts and Cooper, 2006a).

Efficient coordination may also be inhibited by imperfect observability of revolt

levels because participants are unable to observe deviations from an inefficient

convention. However, observability is improved if players can use information

technology, which provides an easier way to disclose information about one’s

actions. In the experiment we gave players an option to disclose their action

by paying a certain cost, and only the disclosed actions were observed in the

feedback stage. Disclosure costs were varied across treatments: it was cheap to

do it in the LOW treatment but expensive in the HIGH treatment.

We find that low disclosure costs do not prevent coordination failure, but

they help overcome it when the participation threshold is lowered. In the first

block all groups in both treatments converge to an inefficient equilibrium and

in HIGH this coordination failure persists throughout the second block in all

groups. In LOW, on the other hand, half of the groups manage to overcome

coordination failure. In these groups efficient coordination is also sustained in

the third block, in which the participation threshold is increased back to its

original level. Revolt levels are similar in the two treatments right after the

decrease in the threshold, but more revolting players disclose their actions in

LOW, leading to higher observed revolt levels. We present evidence suggesting

that it is this difference in observed revolt levels that allows half of the groups

in LOW to move to the efficient equilibrium while no group in HIGH does so.

We also find that strategic considerations are an important factor motivating

deviations from an inefficient convention. Many players are willing to pay to

disclose their actions and disclosures are systematic: revolts are disclosed much

more often than stay outs and disclosures are most frequent at the start of each

block. Finally, when disclosure costs are low farsighted players are much more

likely to initiate revolts than their less farsighted counterparts.

3The term “coordination failure” may be used to denote failure to coordinate on an equilibrium,
but we use terminology that is consistent with the literature, such as Van Huyck et al. (1991) and
Devetag and Ortmann (2007).
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4.1.1 Related Literature

Experiments on overcoming coordination failure in coordination games have

been conducted by Brandts and Cooper (2006a) and Hamman et al. (2007), al-

though their focus on coordination failures in organizations has lead to different

design choices.4 Both studies find that whether a group overcomes coordination

failure can be predicted by the outcomes in the first round, and some players

(called “leaders” by Brandts and Cooper, 2006a) are more likely to initiate

the transition than others (“laggards”). Our study extends these findings by

showing that whether a person is a leader or a laggard partly depends on their

farsightedness level.

Other studies have focused on the role of feedback in coordination games.

Brandts and Cooper (2006b) show that groups receiving full feedback about

the choices of other participants overcome coordination failure more often than

groups receiving information only about the minimum effort level. Devetag

(2003) finds that full feedback improves efficient coordination in a game that

is similar to ours, but without the initial period of inefficient coordination. On

the other hand, Van Huyck et al. (1990) note that informing players about

the distribution of actions does not improve coordination in a minimum effort

game. In our study the level of feedback is determined endogenously, allowing

us to investigate not only the effects, but also the causes of action disclosure.

Also, heterogeneity in received feedback allows us to investigate the relationship

between observed actions and choices more precisely and to determine how

efficient coordination is affected by small increases in observed actions.

Another factor that improves efficient coordination is pre-play communica-

tion (Cooper et al., 1992; Blume and Ortmann, 2007), but in many situations,

both in the lab and in the field, explicit communication is not possible. How-

ever, even without explicit communication players are often able to send signals

to others using their actions, as long as these actions are observed. Action dis-

closure decisions allow us to determine whether players are willing to send such

signals even when doing so is costly and whether these signals increase the rates

of efficient coordination.

The hypothesis that some players are acting strategically to influence future

4The game used in this study does not have the weak-link structure, thus it is not necessary for all
participants to cooperate for the efficient equilibrium to be reached (although we do use a weak-link
structure in the first block of the game, as it has been shown that in such games most groups converge
to the inefficient equilibrium); after the initial block in which groups coordinate on the inefficient
equilibrium, literature on coordination failure in organizations changes the bonus that is paid to
group members if the efficient equilibrium is achieved, while we model a decrease in the strength of
the regime by lowering the participation threshold; participants in our experiment choose one of two
actions, leading to two Nash equilibria, while the strategy space and the number of equilibria in the
minimum effort game are larger.
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actions of other participants has been investigated in two player games with two

Pareto-ranked Nash equilibria (Hyndman et al., 2009), three non Pareto-ranked

equilibria (Terracol and Vaksmann, 2009) and a unique equilibrium (Hyndman

et al., 2012). All three studies find evidence for strategic teaching by showing

that (efficient) coordination is less likely when: (i) the cost of strategic teaching

is increased (Hyndman et al., 2009), (ii) players are rematched in each round or

(iii) information about the payoffs of other players is not displayed (Hyndman

et al., 2012). We contribute to the strategic teaching literature in several ways.

First, we investigate whether strategic teaching is possible in games with more

than two players. For strategic teaching to be profitable in two player coordina-

tion games the teacher must be able to affect the beliefs of the other party about

one’s future choices. In N -person games strategic teaching by one player may

be not enough, even if all other players are receptive learners. To find strategic

teaching profitable, players must expect that others are using strategic teaching

too, and each player would prefer others to perform strategic teaching rather

than performing it themselves, leading to a collective action problem and po-

tentially lowering the willingness to use strategic teaching. Second, we test

the strategic teaching hypothesis in a different way and using a smaller treat-

ment manipulation, making it unlikely that the treatment difference could be

explained by a theory that is not based on players acting strategically.5 Costly

action disclosure also allows us to identify teaching attempts more precisely,

and we show that some personal characteristics, in particular farsightedness,

can partly explain why some players use strategic teaching while others do not.

More generally, the critical mass game resembles other repeated coordina-

tion games with strategic complementarities, complete information and more

than two players, such as entry games (Heinemann et al., 2004; Duffy and

Ochs, 2012), order-statistic games (Van Huyck et al., 1990, 1991, 2007; Kogan

et al., 2011), games with network externalities (Ruffle et al., 2010; Mak and

Zwick, 2010) and step-level public goods games (Rapoport and Eshed-Levy,

1989; Offerman et al., 1996; Sonnemans et al., 1998). For similar one-shot

games, see Heinemann et al. (2009) or Keser et al. (2012). Global games of

regime change use a similar payoff function, but assume incomplete informa-

tion about the participation threshold (Angeletos et al., 2007, tested in an

experiment by Shurchkov, 2013).

5Findings made in two player games, while consistent with strategic teaching, might also be ex-
plained by other factors: larger costs of strategic teaching would lower the likelihood that a player
will choose R even for players who are myopic but choose stochastically; rematching players every
round could increase strategic uncertainty and make learning more difficult; social preferences might
be switched off when players are not informed about payoffs of other participants, leading to different
choices.
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Several theoretical studies in political science proposed a hypothesis that

political action could be taken strategically, to increase future turnout lev-

els. Lohmann (1994, 1993, 2000) develops a signaling theory of mass action

in which citizens with private information about regime strength take part in

mass political action to induce others to join; De Mesquita (2010) models a

coordination game with uncertainty about the level of anti-government sen-

timent, and vanguards undertake some costly action (e.g. acts of terror) to

make the anti-government support seem larger and increase future revolt lev-

els; Edmond (2013) uses a model in which citizens are not perfectly informed

about the strength of the regime and thus the regime has incentives to provide

biased information. Although the setting which we analyze is different from

any of these theoretical models6, our experiment reinforces the suggestion that

participation in political action could be used strategically.

4.2 Experimental Design

At the start of the experiment participants were matched into groups of six

and played a variant of a critical mass game (Heinemann et al., 2009; Devetag,

2003) for 33 rounds. In each round players went through four steps: they (i)

chose an action, (ii) chose whether to disclose this action, (iii) reported beliefs

about the actions chosen by other group members and (iv) received feedback

about the actions of the group members who disclosed their actions.

4.2.1 Action Choice

In each round participants chose an action, R (for “risky” or “revolt”) or S (for

“safe” or “stay out”).7 The payoff of S was fixed while the payoff of R depended

on whether the total number of players who chose R (denoted by #R) exceeded

the participation threshold (θ):

πpRq �

#
100 ECU if #R ¥ θ

5 ECU if #R   θ

πpSq � 60 ECU

6De Mesquita (2010) and Edmond (2013) assume uncertainty about the strength of the regime
(corresponding to the participation threshold in this study) or the preferences of the population. A
strategic player thus affects the actions of other players by altering their beliefs about the unknown
variable. The experiment in this study makes the strength of the regime public knowledge, and the
preferences of all participants are aligned, but there is strategic uncertainty that can be affected by a
strategic choice.

7In the experiment we used neutral language, labeling actions as “A” and “B”. Screenshots of the
decision screen are reproduced in Appendix 4.H
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This payoff function with 2 ¤ θ ¤ 6 leads to two Pareto-ranked stage game Nash

equilibria in pure strategies:8 in the efficient equilibrium everyone chooses R

and in the inefficient one everyone chooses S.

Our main objective is to study how an efficiency-improving transition could

take place following coordination failure. To establish coordination failure we

divided the game into three blocks and set the participation threshold equal

to 6 in the first one, so that 100 ECU is received only if all six players in a

group choose R. With this parameter choice, a critical mass game reduces to a

binary minimum effort game, in which large groups typically converge to the

inefficient equilibrium (Van Huyck et al., 1990). To test whether coordination

failure can be overcome we made efficient coordination easier in the second block

by reducing the participation threshold to 5. In the third block the threshold

was increased back to 6 to test if the history of efficient coordination improves

coordination in a more difficult environment.

The transfer of precedent from one block to the other was facilitated by

keeping all elements of the game constant, except for the participation thresh-

old, and by framing the game in terms of several blocks in a game rather than

as separate games. At the start of the block players were informed about the

duration of the current block (13 rounds in block 1, 15 rounds in block 2, 5

rounds in block 3) and the value of the participation threshold, but parameter

values in future blocks were not known.

4.2.2 Action Disclosure, Belief Elicitation and Feedback

After choosing an action, R or S, players had an option to disclose their action

to other group members. The cost of not disclosing an action was 1 ECU,

while the cost of disclosing depended on the treatment to which a player was

assigned:

• In LOW the disclosure cost was 2 ECU.

• In HIGH the cost was 80 ECU.

After the action disclosure stage we elicited beliefs using a procedure adapted

from Heinemann et al. (2009): players were asked to report the probability that

a randomly selected other group member will choose R in the current round.

The belief elicitation task was incentivised and we used a binarized scoring rule

that elicits truthful beliefs even if subjects are not risk neutral (Hossain and

8There also are stage game equilibria in mixed strategies. In a symmetric stage game mixed strategy
equilibrium all players choose R with probability I�1

11
19

pθ� 1, n� θ� 1q , where I�1 is an inverse of the

regularized incomplete beta function. R is chosen with probability 0.72 if θ � 5, and with probability
0.90 if θ � 6.



98 Overcoming Coordination Failure in a Critical Mass Game

Okui, 2013). In coordination games stated beliefs may not be truthful because

of hedging (see Armantier and Treich, 2013), and we reduced the incentives

to hedge by paying either for the main part of the experiment or by playing

a lottery in which the probability to receive the higher prize is determined by

performance in a randomly selected belief elicitation task. Details about the

belief elicitation task are presented in Appendix 4.D.

At the end of each round players were informed only about the actions

taken by group members who disclosed their actions. In particular, players

were informed about:

• The total number of group members who chose R and disclosed (“observed

R”)

• The total number of group members who chose S and disclosed (“observed

S”)

• The total number of group members who did not disclose their actions

(“unobserved”)

In addition, players were informed about their round income and whether

at least θ players chose R. A history box displaying own actions, stated beliefs

and observed feedback in previous rounds was always visible on the computer

screen. Feedback about the accuracy of reported beliefs was provided only at

the end of the experiment to suppress information about the choices of group

members who did not disclose their actions.

4.2.3 Procedure

Experiments were conducted in the BEElab at Maastricht University in Febru-

ary, 2014, using z-Tree (Fischbacher, 2007) and ORSEE (Greiner, 2015). 72

participants took part in the experiment, 36 in each treatment. The aver-

age duration of the experiment was 100 minutes and average earnings were

18.50 euros. Earnings in all parts of the experiment were denoted in ECU and

exchanged into euros using the conversion rate of 250 ECU = 1 EUR. Nega-

tive round income was possible in HIGH, therefore in both treatments players

started with an initial balance of 400 ECU.

After reading the instructions but before starting the experiment subjects

answered several questions about the payment scheme and calculated earn-

ings in hypothetical situations to ensure that instructions were well understood

(these questions are reproduced in figures A.5 and A.6 in Appendix 4.H). The

questionnaire was computerised and subjects could not continue until all the

questions have been correctly answered.
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4.2.4 Theoretical Predictions

In each stage game players chose an action (R or S) and whether to disclose

it (D) or not (ND), thus each player had four strategies: (R, D), (R, ND), (S,

D) and (S, ND). Disclosure is costly, therefore (R, ND) dominates (R, D) and

(S, ND) dominates (S, D) so no action should be disclosed if a stage game was

played once or if all players were myopic. However, actions might be disclosed on

the path of a subgame perfect Nash equilibrium (SPNE) in the repeated game.

For example, consider a strategy that prescribes R if all players disclosed their

actions in all previous rounds and prescribes S otherwise. There is a SPNE in

which all players use such strategies, and on the equilibrium path all players

would be choosing R and disclosing their actions in all but the last round as long

as disclosure costs are sufficiently small. In a similar way, there are SPNE in

which players do not coordinate on a common action if, for example, all players

use strategies that prescribe R only following such history of miscoordination.

Nash equilibrium is useful in making predictions about stage-game outcomes

that may be reached in the long run, but the multiplicity of equilibria leads

to vacuous predictions about the dynamic process in a repeated game. An

alternative approach is to make predictions about the path of play using a

learning model, such as weighted fictitious play (Cheung and Friedman, 1997).

In this model players form beliefs based on observed history and choose an

action that maximises immediate utility conditional on those beliefs. Fictitious

play predicts that players who observed others choosing a particular action will

expect this action to be chosen more often, and will therefore be more likely to

choose this action themselves. We formulate this first prediction the following

way:

Prediction M1. Players who observe action R chosen more often are more

likely to choose R and to believe that others will choose R.

However, players in learning models assume that others are using station-

ary strategies, ignoring the possibility that others could be learning as well.

These models therefore overlook strategic teaching, which may explain devia-

tions from an inefficient convention. To test whether behaviour is driven by

such strategic motives we extend the learning model to include sophistication,

and compare the predictions of this model to the predictions of a standard

learning model. The experiment was designed in a way such that the two

learning models would make different predictions, allowing us to determine: (i)

whether choice dynamics can be accurately approximated by belief learning and

(ii) whether the explanatory power of a learning model is increased by adding
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sophistication.

We add sophistication to the standard learning model by assuming that some

players are sophisticated and others are myopic. Myopic players act as predicted

by the standard belief learning model (see prediction M1). Sophisticated players

anticipate the learning process of myopic players and take into account not only

the differences in immediate expected payoffs, but also the differences in future

payoff flows generated by each action. A solution concept for N -person critical

mass games with sophisticated and myopic players is presented in Chapter

3; here we will only use the features of the model that are useful in making

predictions about the treatment difference.9

Sophisticated players may deviate from an inefficient convention to increase

future payoffs from efficient coordination. Furthermore, sophisticated players

would be willing to pay to disclose their action because they value the deviation

for its informational content rather than for the immediate payoff it generates.

A decision to not deviate should never be disclosed because it makes myopic

players less likely to choose R in the future, which can only decrease the payoffs

of sophisticated players.

Prediction S1. Action S is never disclosed, R is disclosed more often than S.

The model with sophistication also predicts differences in disclosure pat-

terns between the two treatments. Action R should be disclosed more often in

LOW than in HIGH because lower disclosure costs reduce the cost of strategic

teaching. Since action S should never be disclosed, its disclosure rates should

not depend on disclosure costs.

Prediction S2. R is more often disclosed in LOW than in HIGH.

In addition to the immediate effect of action disclosure, lower disclosure costs

are predicted to help overcome coordination failure. This prediction follows

from predictions M1, S1 and S2. Notice that S1 and S2 predict that only R will

be disclosed, and more so in LOW, therefore M1 predicts that over time the

learning process should lead to higher R levels in LOW than in HIGH. Higher

R levels result in an increased frequency of instances when θ or more players

choose R, in which case coordination failure would be overcome.

Prediction S3. R is more frequently chosen and coordination failure is more

often overcome in LOW than in HIGH.

9For alterantive ways to model sophistication see Milgrom and Roberts (1991), Kalai and Lehrer
(1993) or Camerer et al. (2002a).
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Finally, players with a longer planning horizon would be more likely to

deviate from an inefficient convention because they put more weight on future

benefits of efficient coordination.

Prediction S4. The tendency to choose R and disclose it is higher among

farsighted subjects.

It is important to note that predictions S1, S2, S3 and S4 would not hold if

all players were myopic, because no myopic player would be willing to pay to

disclose an action.10 Predictions S1, S2, S3 and S4 are therefore not only inter-

esting on their own, but they also help to test whether players are motivated

by strategic considerations.

4.3 Experimental Results and Analysis

We address two main questions in this section. First, we want to know if lower

action disclosure costs help overcome coordination failure. Second, we want to

see if the transition process can be explained by a learning model, either with

sophistication or without it.

4.3.1 Is Coordination Failure More Often Overcome with Low
Action Disclosure Costs?

To compare the treatments, we look at two measures: R levels, defined as the

total number of players in a group who choose R, and transition frequency,

defined as the fraction of groups that coordinate on S in the end of block 1 and

go on to coordinate on R by the end of block 2. The former metric captures

the willingness to initiate a transition while the latter measures the success of

these efforts.

4.3.1.1 Differences in R Levels

In block 1 there is no significant difference in terms of R levels (figure 4.1). In

both treatments about half of the players choose R in round 1, but the tendency

to do so decreases until almost nobody is choosing R at the end of block 1. In

the last five rounds of block 1 the fraction of players who choose R is 6% in

LOW and 3% in HIGH while average beliefs about R choice are respectively

10Action disclosure could be myopically optimal only if players were willing to throw away money
to reduce advantageous inequality (β ¡ 1 in the model of Fehr and Schmidt, 1999). We tested the
existence of such preferences in an additional task, where players could reduce their earnings without
affecting the earnings of the other person. We found that such preferences were rare: 94% of the
sample chose not to decrease their own earings.
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Figure 4.1: Comparison of R levels, by treatment. Vertical dashed lines separate the three
blocks with different values of θ.

14% and 13%. A high participation threshold therefore leads to coordination

failure regardless of disclosure costs.

The effect of disclosure costs becomes apparent when the participation

threshold is lowered in block 2. The treatment difference in round 14 is small

and insignificant (Mann-Whitney U test p ¡ 0.4810) as a decreased thresh-

old leads to a similar jump in both treatments. However, the gap between

two treatments soon widens and eventually almost all players in HIGH stop

choosing R while average R levels hardly change in LOW.

Result 1. R levels in LOW are significantly higher than in HIGH in blocks 2

and 3, but there is no significant difference in block 1. In block 2 the treatment

difference increases over time.

Result 1 can be supported by regressing R levels on the treatment variable,

number of rounds remaining until the end of the block and the interaction of

these two variables. Table 4.1 shows that the main effect of the treatment

variable is significantly different from zero in blocks 2 and 3, but not in block

1.11 We use the estimated coefficients to predict the treatment difference in each

round (table A.1 in the Appendix) and find no significant treatment difference

in block 1 and at the start of block 2, but a significant difference at the end of

block 2 and in block 3. The observation that the gap between two treatments

grows over time in block 2 is also evident from the negative coefficient of the

interaction term in the second column of table 4.1.
11If we do not include the interaction term, the treatment coefficient is significant in block 2 and 3

at a 5% level and not significant in block 1.
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Table 4.1: Random effects GLS regression using group level data (12 groups). Dependent
variable: R levels. Standard errors clustered on the group level.

Block 1 Block 2 Block 3
LOW treatment 0.060 3.437** 2.900**

(0.24) (2.44) (2.20)
Rounds remaining 0.172*** 0.155*** 0.133***

(3.81) (2.90) (2.76)
Rounds remaining * LOW treatment 0.009 -0.143** 0.000

(0.15) (-2.28) (0.00)
Constant -0.353*** -0.450*** -0.100**

(-2.79) (-2.94) (-2.28)
Observations 156 180 60

t statistics in parentheses

* p 0.10, ** p 0.05, *** p 0.01

4.3.1.2 Differences in Transition Frequency

A treatment difference is also observed if the comparison is performed using

transition frequency instead of R levels. Convergence patters on a group level

are illustrated in figure 4.2. All groups converge to an inefficient equilibrium in

the first block, and no group is in equilibrium after the change in participation

threshold in round 14. However, the equilibrium to which groups converge in

block 2 depends on disclosure costs: in HIGH all groups return to the ineffi-

cient equilibrium, while in LOW half of the groups move to the efficient one.

The flat line of average R levels in LOW shown in figure 4.1 therefore does not

tell the entire story: while no group is in equilibrium in round 14, all converge

to one by round 18. All three groups in LOW that do overcome coordination

failure in block 2 stay in the efficient equilibrium in block 3, when the partici-

pation threshold is increased to its original value. A temporary decrease in the

participation threshold can therefore have a lasting positive effect on the levels

of efficient coordination.

Result 2. No groups overcome coordination failure in HIGH. Half of the groups

overcome coordination failure in LOW.

Overall, we find that lower action disclosure costs increase both the R lev-

els and the frequency of transitions to the efficient equilibrium. Since action

disclosure costs should have no effect if all players were myopic, these findings

seem to indicate that some players act strategically, a hypothesis that will be

investigated in the next subsection.
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Figure 4.2: Convergence to an equilibrium by group. A group is said to be in an efficient
equilibrium if all members choose R and in an inefficient equilibrium if all group members
choose S. Empty space denotes rounds in which a group is not in equilibrium. Vertical
dashed lines separate three blocks with different threshold value. Groups are ordered by
the total number of R choices in the entire experiment. Horizontal dashed lines show the
median split, groups with higher R levels being at the top.

4.3.2 Is Adaptation Explained by Belief Learning Models?

Treatment differences in R levels and transition frequency are mainly driven by

the adaptation process: figure 4.3 shows that groups which overcome coordi-

nation failure in LOW (top three groups in the right panel of figure 4.2) and

groups that are most likely to choose R in HIGH (top three groups in the left

panel of figure 4.2) experience similar histories in block 1 and round 14, but all

the groups in LOW overcome coordination failure while no group does so in

HIGH. This subsection tests whether the adaptation process can be explained

by a learning model with or without sophistication: we first test the predictions

made by each model and then fit a learning model to the data and compare the

choices simulated by each model to experimental data.

4.3.2.1 Action Disclosure

A learning model with sophistication predicts that R will be disclosed more

often than S and more often in LOW than in HIGH (predictions S1 and S2).

These predictions are mostly confirmed by the data (figure 4.4). In the first

round of block 2 all players who choose R disclose their actions in LOW, but
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Figure 4.3: R levels for groups in LOW that transition to an efficient equilibrium and groups
in HIGH that choose R most (three uppermost groups in figure 4.2 for each treatment).

only 40% do so in HIGH, a difference that persists until all groups converge to

an equilibrium in round 18. Actions are more often disclosed at the start of a

block than at the end; although this decrease is not the main interest of this

chapter, we suspect that disclosures may go down because the lower number of

remaining rounds decreases incentives for strategic teaching or because strategic

uncertainty decreases as players converge to an equilibrium, reducing the need

for disclosure.12
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(a) Disclosure conditional on choosing R
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(b) Disclosure conditional on choosing S

Figure 4.4: Frequency of disclosure in LOW and HIGH, blocks 2 and 3.

The difference between panel (a) and panel (b) of figure 4.4 indicates that S

is disclosed much less often than R in both treatments. Still, some players do

disclose S in LOW, especially at the start of each block, suggesting that such

disclosures may also be used for strategic reasons.

12Large fluctuations and missing data in HIGH after round 18 are caused by a small sample of
disclosed actions.



106 Overcoming Coordination Failure in a Critical Mass Game

Result 3. R is disclosed more frequently than S. R is disclosed more frequently

in LOW than in HIGH.

Result 3 is supported by a probit regression of a disclosure decision on action

choice and treatment dummies (see table A.3 in Appendix 4.B). The treatment

effect is highly significant if all data is taken into account or if we look only at

disclosure conditional on choosing R. Action R is disclosed significantly more

often than S, and the rate of disclosure decreases over time.

4.3.2.2 Belief Formation

The prediction that observing R increases both the beliefs about R choice and

the likelihood to choose R (prediction M1) can be tested on a group level and

on an individual level. On a group level, groups with higher initial observed

R levels should overcome coordination failure more often. Table 4.2 provides

evidence for this prediction: all groups in which at least 4 players choose and

disclose R in round 14 overcome coordination failure, while all other groups

do not. This difference cannot be explained by path dependence alone, as

groups in which many players choose R but do not disclose their actions do not

overcome coordination failure (e.g. groups 4 and 11). Overall, the likelihood

of a transition depends on the level of observed R choices, and this feedback is

lacking when disclosure costs are high.

Table 4.2: The number of players in each group who chose R (“R levels”)and the number of
players who chose R and disclosed it (“Disclosed R”) in round 14. A transition is said to
occur if all group members were choosing R in the last round of block 2.

Treatment Group ID R levels Disclosed R Transition?
HIGH 3 2 0 No
HIGH 4 4 3 No
HIGH 9 1 0 No
HIGH 10 3 1 No
HIGH 11 4 2 No
HIGH 12 1 0 No
LOW 1 1 1 No
LOW 6 1 1 No
LOW 7 3 3 No
LOW 2 4 4 Yes
LOW 5 4 4 Yes
LOW 8 5 5 Yes

Result 4. Transitions to an efficient equilibrium are correlated with R levels a

group observed in round 14.
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Table 4.3: Three-level nested random effects model and two-level random effects GLS model
(12 clusters). Dependent variable: stated probability that a randomly chosen group member
chose R (from 0 to 100). Standard errors are robust to correlation within the observations
of each group.

Random effects GLS Nested random effects

Two-period lags One-period lags Two-period lags One-period lags
Observed R in (t-1) 11.20*** 11.58*** 10.47*** 10.83***

(12.90) (9.19) (9.36) (8.47)
Observed R in (t-2) 2.440** 1.829

(2.33) (1.57)
Observed S in (t-1) -2.940** -2.041 -3.639*** -3.191**

(-2.50) (-1.37) (-2.98) (-2.00)
Observed S in (t-2) 0.916 -0.0777

(1.01) (-0.07)
Actual R level in (t-1) 0.362 3.682*** 1.128 3.940***

(0.31) (3.84) (0.89) (4.50)
Actual R level in (t-2) 1.680** 1.836**

(1.98) (2.10)
Treatment: 1 = LOW -1.029 0.0160 0.189 1.116

0 = HIGH (-0.49) (0.01) (0.09) (0.54)
Constant 13.91*** 13.91*** 13.82*** 13.96***

(6.14) (6.77) (6.30) (6.86)
Observations 1944 2160 1944 2160

t statistics in parentheses
* p 0.10, ** p 0.05, *** p 0.01

On an individual level, we can test if players who observe more R choices

report higher beliefs. To test this prediction we regress stated beliefs on the

level of observed R and observed S in the previous two rounds. A correct

specification must take into account the fact that our units of observation are

not independent: stated beliefs might be correlated with the person’s stated

beliefs in other rounds as well as the stated beliefs of other group members in

the current round. Thus the most appropriate specification should include an

individual random effect nested within a group random effect (three-level nested

random effects model). Additionally, we estimate a standard two-level model

with only a group-specific random component. As an additional robustness

check we include a model with only one round lags.

Table 4.3 shows that observed R levels have a significant positive effect on

beliefs about R choice in the subsequent round. The actual R level is also sig-

nificant, but the significance level and the economic size are much lower than

that of the observed R level. Observing more players choosing S is not signifi-

cant, suggesting that players who do not disclose their actions are perceived in

a similar way to those who choose S.

Models in table 4.3 treat observations from all rounds equally, therefore

results are influenced by the correlation between choices and beliefs after play

has converged to an equilibrium, potentially overstating the effect of belief
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learning. We therefore replicate the estimation using data only from rounds in

which play has not yet converged, where convergence is said to occur if in the

previous round all group members chose R or if all chose S. In this subset the

effect of observed feedback on beliefs is lower, but still highly significant (see

table A.5 in Appendix 4.B).

4.3.2.3 Estimation of a Weighted Fictitious Play Model

After establishing that beliefs are related to observed R levels, we can specify

the adaptation process by fitting a belief learning model. We used weighted

fictitious play (Cheung and Friedman, 1997), modified to accommodate three

features of the game. First, we have to extend the model to N -person games

because Cheung and Friedman (1997) specify it only for two player games. We

could have done it by allowing separate beliefs about the action of each partic-

ular group member, but players could not update such beliefs because in the

experiment individual choices could not be tracked. Instead, we make a homo-

geneity assumption (Rapoport, 1985; Rapoport and Eshed-Levy, 1989), which

states that players form a single belief biptq P r0, 1s about the probability that

any other group member will choose R.13 Second, the option to not disclose

one’s action results in incomplete feedback, thus additional assumptions need

to be made about how unobserved actions are perceived. If beliefs were formed

using Bayes rule, the interpretation of undisclosed actions would depend on be-

liefs about the probability that R is disclosed, which is unknown to the players.

Instead of imposing Bayesian updating and correct beliefs we use a different

approach and add a new parameter (ρ) which specifies how an unobserved ac-

tion is perceived. In particular, if the number of other group members who did

not disclose in round t is denoted by #Uptq, the perceived R level would be

calculated by #Rptq� ρ �#Uptq, with ρ P r0, 1s.14 If ρ � 1, unobserved actions

are perceived as R while if ρ � 0, unobserved actions are perceived as S. The

third feature is the change in the participation threshold from one block to the

next, which might mean that experience in one block is not directly applicable

to the next block. We therefore allow players to discount experience from a

previous block by multiplying the observations from the first block by β1 and

the observations from the second block by β2. Putting everything together, we

13This specification of fictitious play assumes that players expect each other member to use a
stationary mixed strategy. In a game with two strategies prior beliefs about the probability to choose
R follow a beta distribution, and are updated using Bayes rule, assuming that the aggregate number
of choices were independently drawn from a binomial distribution.

14Equivalently, we could allow players to form three separate beliefs bRi ptq, b
S
i ptq and bUi ptq about the

observed number of R, S and U in a standard way, and calculate beliefs about the perceived number
of R as a convex combination of bRi ptq and bUi ptq.
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use the following formula to determine beliefs of player i about the likelihood

that that any other group member will choose R in round t, for all t ¡ 1:

biptq �

°t�1

u�1 γ
u�1 #Rpt�uq�ρ#Upt�uq

n�1
Dpt� uq°t�1

u�1 γ
u�1Dpt� uq

(4.1)

where Dpτq �

$'&'%
β1 � β2 if τ P r1, 13s
β2 if τ P r14, 28s
0 otherwise

The model was fit by finding parameters γ, ρ, β1 and β2 that minimise the

mean squared deviation between biptq and the stated belief. The estimated

coefficient values are as follows: γ̂ � 0.43, ρ̂ � 0.15, β̂1 � 0.28 and β̂2 � 0.99.

The low estimated value of ρ shows that most players react to an unobserved

action as if it was S rather than R. Adding the β1 parameter improves the fit

substantially, and the low estimate shows that history in the first block has

only a weak effect on choices in block 2. The estimated value of β2, however,

is close to 1, indicating that history in block 2 has a strong effect on beliefs

in round 3. Differences between the estimated values of β1 and β2 reflect an

asymmetric effect of changes in θ: a decrease allows some groups to move from

the inefficient equilibrium to the efficient one, but a subsequent increase does

not lead back to the inefficient equilibrium.

We evaluate the fit of a belief learning model by comparing stated beliefs

with fictitious play beliefs, calculated using the estimated population level pa-

rameters and the actual history of observed feedback. Figures A.1 and A.2 (in

Appendix 4.A) show that predicted beliefs track stated beliefs rather well even

on an individual level. Largest discrepancies arise for players whose stated be-

liefs are not sensitive to observed history. Overall, both the regressions and the

estimation of a belief learning model indicate that stated beliefs are affected by

the observed history, as is predicted by a belief learning model.

Result 5. Players who observed larger R levels in previous rounds expect that

others will be more likely to choose R.

4.3.2.4 Response to Stated Beliefs

The previous subsection has shown that beliefs can be predicted using observed

feedback and a weighted fictitious play model. Next, we want to determine if

stated beliefs are informative of choices. Rational players should base their

decisions on the expected utilities, calculated by

EUpSq � up60q
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EUpRq � up100q � Prp#R ¥ θq � up5q � p1� Prp#R ¥ θqq

where EUpSq and EUpRq are the expected utilities of actions S and R and

Prp#R ¥ θq is the subjective probability assigned to an event that the thresh-

old will be exceeded. To calculate this probability we use elicited probabilistic

beliefs biptq to construct a probability distribution over the number of group

members who choose R. In these calculations we assume that players expect

the actions of other group members to be independently drawn from a bino-

mial distribution with the stated probability and that beliefs are homogeneous

(Rapoport, 1985; Rapoport and Eshed-Levy, 1989), so that the same probabil-

ity is assigned to each group member.15 The probability that the threshold will

be exceeded is calculated as follows:

Prp#R ¥ θq �
n�1̧

k�θ�1

pbiptqqkp1� biptqqn�1�k

�
n� 1

k



How expected utilities are mapped into choices is determined by a choice rule.

We compare the predictions of the following six choice rules:

1. Deterministic choice (DET ). The action with a higher expected utility

is always chosen, utility is equal to the monetary payoff.

2. Logistic choice (LOG). Utility is equal to the monetary payoff, but each

action can be chosen with positive probability, determined by a logistic

choice rule:

PrpRq �
eλEUpRq

eλEUpRq � eλEUpSq
, with λ P r0,8q

3. Risk preferences (RISK ). In addition to a logistic choice rule, this spec-

ification includes a utility function with constant relative risk aversion:

upπiq �
π1�r
i

1� r

4. Pro-social preferences (SOC ). In addition to their own payoff, subjects

also take into account the average earnings of other group members, and

the strength of social preferences is captured by parameter α P p0, 1q:

upπi, π�iq � p1� αqπi � α
¸

jPNztiu

πj
n� 1

15If separate beliefs were formed, the scoring rule is designed to elicit the expected value of all
probabilistic beliefs.
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Table 4.4: Estimated parameter values and mean squared deviation (MSD) for each model.

Model
Parameter DET LOG RISK SOC FAR ALL

λ̂ – 11.41 0.02 34.60 12.93 2.82
r̂ – – -1.85 – – -0.43
α̂ – – – 0.65 – 0

ĥ – – – – 6.75 3.60
MSD 242 197.88 181.31 183.83 181.31 180.25

Performance 0.00 71.45 98.28 94.20 98.28 100.00
(0 = worst, 100 = best)

5. Farsightedness (FAR). This choice rule assumes that players take into

account the payoffs from hi rounds, where hi P r1,8q is the length of the

planning horizon.16 We assume that farsighted players expect all other

group members to use the DET choice rule, with beliefs formed using

weighted fictitious play. The ability to anticipate the reaction of others

allows players to choose a best response path to the actions of other players

in every future round. The expected utility of an action is calculated by

adding the expected utilities from all rounds along this best response path.

6. All preferences and farsightedness (ALL). This specification com-

bines logistic choice with farsightedness, risk and pro-social preferences.

We estimate the parameters of all six choice rules by minimizing the mean

squared deviation (MSD) between the predictions and experimental data. Table

4.4 shows the estimated parameter values and the goodness of fit for each choice

rule. Unsurprisingly, the rule that combines all preferences and farsightedness

fits data best, although specifications with only risk preferences or farsighted-

ness fit almost equally well with a lower number of parameters. The estimated

parameters of the ALL model indicate slight risk aversion, farsightedness and

no pro-social preferences. Figure A.3 in Appendix 4.A compares predictions

with experimental data across rounds. All choice rules fit data well at the end

of each block, but models DET and LOG under-predict R choice following co-

ordination failure in LOW at the start of block 2 and all models under-predict

R choice in LOW at the start of block 3. Overall, deviations from a theoreti-

cal best response could be explained either by risk aversion, farsightedness or

pro-social preferences.

16Players know the length of the game and cannot take into account the earnings from rounds that
will not be played. Therefore the actual number of rounds taken into account is minthi, T � t � 1u,
where T is the number of rounds in a block and t is the current round.
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Table 4.5: Frequency of transitions to the efficient equilibrium in simulations (measured by
the fraction of iterations in which R is the deterministic best response to beliefs in round
28). Left panel shows the number of group members who choose R and disclose in in round
14 and whether a group overcomes coordination failure in the experiment.

Experiment Simulations
Group ID (R ^ D) in 14 Transition? DET, LOG RISK SOC FAR ALL

8 5 Yes 0% 100% 99% 89% 100%
2 4 Yes 0% 76% 53% 86% 84%
5 4 Yes 0% 84% 57% 86% 88%
4 3 No 0% 29% 10% 47% 31%
7 3 No 0% 21% 2% 48% 22%
11 2 No 0% 2% 0% 4% 2%
1 1 No 0% 0% 0% 0% 0%
6 1 No 0% 0% 0% 0% 0%
10 1 No 0% 3% 0% 2% 2%
3 0 No 0% 0% 0% 0% 0%
9 0 No 0% 0% 0% 0% 0%
12 0 No 0% 0% 0% 0% 0%

Next we want to determine how well each choice rule can predict whether a

group will overcome coordination failure. We calculate beliefs in round 14 using

estimated population-level fictitious play parameters and observed feedback in

rounds 1-13, averaged across all players. Then we use each choice rule with

weighted fictitious play to simulate the path of choices in rounds 15-28 for

every 6-person group. We run 100 simulations for each model and count the

frequency of simulations in which coordination failure is overcome, which is

said to occur if in round 28 all group members hold beliefs under which R is

a deterministic best response. Results of these simulations and experimental

data are provided in table 4.5. No group overcomes coordination failure when

choices are simulated with DET or LOG, while other rules correctly predict

higher success rates for groups that actually overcome coordination failure in

the experiment (#8, #2 and #5).

Simulations show that belief learning models with risk preferences, social

preferences or farsightedness are able to explain how the likelihood to overcome

coordination failure depends on R levels observed in round 14. This is, of course,

not the only possible explanation, and we review other possibilities in Appendix

4.C. In short, we look at possibilities that players in the two treatments have

different personal characteristics, experience different histories in block 1, or

that the adaptation process is driven by reinforcement learning or reciprocity.

Each of these explanations could potentially explain the treatment difference,

but we show that none of them can fully explain experimental data.
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4.3.3 Individual Heterogeneity in LOW

Whether a group in LOW overcomes coordination failure depends on the num-

ber of group members who choose R and disclose it in round 14. In this section

we will explore whether R is more often chosen by players who are more risk

seeking, pro-social or farsighted, as predicted by the theory (see Appendix 4.E).

Before showing the results, we will explain the tasks used to elicit these char-

acteristics. Each task was incentivized and these earnings were added to the

earnings from the main part of the experiment.

4.3.3.1 Elicitation of Risk and Social Preferences

Risk preferences were elicited using a multiple price list (Holt and Laury, 2002),

and the number of safe choices was used as a measure of risk aversion.17 Note

that objective risk was not present in the experiment and uncertainty about

payoffs originated only from strategic uncertainty. But if players form prob-

abilistic beliefs, a utility function with a lower Arrow-Pratt measure of risk

aversion would make R myopically optimal for a wider range of beliefs (see

Appendix 4.E.3 for a proof).

Social preferences were elicited using a Social Value Orientation (SVO) Slider

Measure (Murphy et al., 2011), following a z-Tree implementation by Crosetto

et al. (2012). In this measure subjects complete six allocation tasks18 between

themselves and some other participant, randomly selected from a different group

to prevent meeting former group members. A graphical representation of all

tasks is shown in figure A.4, Appendix 4.F. At the end of the experiment one

task was chosen for payment and subjects received either the amount that they

sent or the amount that was sent to them by the other participant. Answers to

each task were used to construct a continuous, uni-dimensional scale of SVO,

known as the SVO angle, using the following formula:

SVO angle � arctan

�°
tPt1,..,6upP

O
t � 50q°

tPt1,..,6upP
S
t � 50q

�
where P S

t is the amount allocated to oneself in task t and PO
t is the amount

allocated to the other person. SVO angle ranges from -16.26� for perfectly

competitive individuals to 61.39� for perfectly altruistic individuals.

175 subjects switched more than once, therefore results are slightly different if risk aversion is
measured using the first switching round. In such case the coefficient of risk aversion decreases and
becomes less significant in models 5 and 6 in table 4.7. The coefficient of farsightedness turns significant
at a 10% level in model 3 in table 4.7.

18We added a seventh task, completed after the six original ones. This task tested whether subjects
were willing to give up their earnings to reduce the level of advantageous inequality (see footnote 10).
This additional task was not used to calculate the SVO angle.
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4.3.3.2 Elicitation of Farsightedness

Players who choose R for strategic reasons must be able to reason about future

events and take future payoffs into consideration. If there is heterogeneity in

the ability to plan ahead, prediction S4 states that farsighted players, i.e. those

with a longer planning horizon, should be more likely to initiate a transition.

Farsightedness was measured using three individual choice tasks, each pre-

sented as a decision tree with two decision nodes and two chance nodes (see

figures A.10 - A.12 in Appendix 4.H). These tasks were designed by Bone et al.

(2009) to test whether subjects are able to plan ahead and anticipate their own

future choices. In the second decision node one move dominates the other, mak-

ing the decision trivial (97% of players chose the dominant move, both in Bone

et al., 2009, and in our experiment). Which move is dominant in the first node

depends on whether players anticipate their own choices in the second node:

players who do so and ignore the payoffs that will not be reached would choose

one move (we call it “correct move” as it would maximise payoffs for 97% of

the players) while those who treat the second decision node as a chance node,

expecting all final payoffs to be equally likely, would choose a different move.

Bone et al. (2009) found that the correct move is chosen by only a third of

the subjects. To classify subjects more precisely we designed three tasks with

different difficulty levels,19 leading to an increase in the frequency of correct

moves from 21% in the hardest task (task 1) to 42% in the task of intermediate

difficulty (task 2) and 65% in the easiest task (task 3). Each subject completed

all three tasks in the order of decreasing difficulty and one task was randomly

chosen for payment. 88% of subjects chose the correct move in an easier task if

they had chosen the correct move in a more difficult task, conforming with the

Guttman scale (Guttman, 1950). To more precisely classify subjects who do

not conform with the Guttman scale, the farsightedness score was calculated

as follows:

• Score of 0 for players who failed in the easy task

• Score of 1 for players who solved the easy task but failed in the interme-

diate task
19We manipulated the task difficulty by changing payoff differences. Two types of payoff differences

are present in each task: the actual difference in expected payoffs in favour of the correct move if
the second node decision was taken into account (“farsighted payoff difference”), and the difference in
the average of all payoffs in favour of the incorrect move if all payoffs were treated as being equally
likely (“myopic payoff difference”). Task 1 was adapted from Bone et al. (2009), with a farsighted
payoff difference of 125 ECU and the myopic payoff difference of 138 ECU. Task 2 made the correct
choice more attractive by increasing the farsighted payoff difference to 175 ECU and at the same time
reducing the myopic payoff difference to 125 ECU. In task 3 the distribution of payoffs was the same
for both actions, reducing the myopic payoff difference to 0, but the payoffs were arranged in a way
that increased the farsighted payoff difference to 300 ECU.
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• Score of 2 for players who solved the easy and intermediate tasks but failed

in the hard task

• Score of 3 for players who solved all tasks

Using the number of correct answers to measure farsightedness has two draw-

backs: classification is coarse and farsightedness may be confounded with other

traits such as intelligence. To overcome these downsides a second measure of

farsightedness was constructed using a ratio of time spent in the first decision

node relative to time spent in the second node. Time ratio reflects the will-

ingness to think ahead (in node 1) instead of afterwards (in node 2), and is a

continuous variable, capturing individual differences more precisely. Still, both

measures are closely related (see table A.4 in Appendix 4.B). At the end of

experiment we also administered a self-reported temporal orientation question-

naire that measured time perspective, anticipation of future consequences and

the ability to plan ahead (Steinberg et al., 2009).

4.3.3.3 Results: Personal Characteristics and R Choice in LOW

We identify the types of players who are more likely to choose R by compar-

ing the characteristics of subjects who choose R and then running a probit

regression with four specifications. In the first two specifications the dependent

variable is set to 1 for players who chose R and disclosed it in round 14 and

is set to 0 otherwise. We favour this specification because observed R levels in

round 14 accurately predict transition success, but it suffers from a problem of

independence, as observations in round 14 are affected by the shared history

in block 1. To account for the different histories we add the total number of

observed R and S in block 1 as control variables. Furthermore, we replicate the

analysis in models 3 and 4 using choices in round 1, which are independent.

The difference between model 1 and 2 and between model 3 and 4 lies in the

measurement of farsightedness: farsighted score is based on the number of cor-

rectly solved individual choice tasks, while time ratio measures time spent in

the first decision node relative to time spent in the second decision node.

Both the average scores in table 4.6 and the probit regressions in table 4.7

show that players who are more farsighted and who report higher beliefs are

more likely to choose R in rounds 1 and 14. Table 4.6 shows a large difference in

the magnitude of farsightedness between players who choose R and S, although

Mann-Whitney U test fails to reject the null hypothesis when the farsightedness

score is used. Table 4.7 reports the marginal effects at the means of covariates

for the four probit models. Farsightedness is positively related to the tendency
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Table 4.6: Average scores of subjects who choose R and S in rounds 1 and 14, LOW treat-
ment. Significance levels reflect p-values of a Mann-Whitney U test, where the null hypoth-
esis is that characteristics of subjects who choose S are drawn from the same distribution
as the characteristics of those who chose R.

Round 1 Round 14

S R S R
Farsightedness: score 0.75 1.25 0.78 1.28
Farsightedness: time ratio 1.53 1.69 1.34* 1.89*
Risk aversion 6.38 5.60 6.06 5.83
Pro-sociality 20.75 24.52 23.34 22.35
Beliefs 30.75*** 66.80*** 35.44** 52.67**
Average income 63.54 67.99 62.68 69.35
N 16.00 20.00 18.00 18.00

* p 0.10, ** p 0.05, *** p 0.01

Table 4.7: Probit models, where the dependent variable is set to 1 if players choose R and
disclose it (1-4), or choose R (5-6). Controls for gender and age are included. Standard
errors are heteroskedasticity-robust.

(1) (2) (3) (4) (5) (6)
R14 R14 R1, R ^ D R1, R ^ D R1, R R1, R

Farsighted score 0.153* 0.147 0.119
(1.67) (1.62) (1.17)

Time ratio 0.289*** 0.249*** 0.107
(3.08) (2.86) (0.88)

Risk aversion -0.00779 -0.0233 -0.0835 -0.0838 -0.274** -0.308**
(-0.12) (-0.34) (-1.24) (-1.13) (-2.24) (-2.28)

Pro-sociality 0.00279 0.00334 0.0106 0.0104 0.0210** 0.0220**
(0.46) (0.55) (1.28) (1.29) (2.16) (2.23)

Beliefs 0.00673 0.0117** 0.0104*** 0.0120*** 0.0191*** 0.0204***
(1.46) (2.36) (3.38) (3.85) (3.54) (3.28)

Observed R 0.0448 0.0437
(1.40) (1.40)

Observed S -0.0373 -0.0567
(-0.90) (-1.34)

Constant

N 36 36 36 36 36 36
pseudo R2 0.174 0.264 0.300 0.355 0.508 0.495

Marginal effects; t statistics in parentheses

(d) for discrete change of dummy variable from 0 to 1

* p 0.10, ** p 0.05, *** p 0.01
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to choose R and disclose, and the significance level depends on the dependent

variable and on the method used to measure farsightedness (p-values range from

0.002 to 0.131). In addition to statistical significance, we find a large economic

effect: the predicted likelihood to choose R and disclose in round 14 is 30% for

subjects with a farsightedness score of 0 and increases to 81% for those with

a score of 3, holding other factors constant at their mean (Wald test shows

that the difference is statistically significant, p-value = 0.0324). The difference

between subjects with a score of 0 and those with scores 1 or 2 is of expected

sign, but not significant at the 5% level. The ratio of decision times predicts

choices better than the number of correct answers, as is evident from higher

significance levels and a higher pseudo-R2. The coefficient of stated beliefs is

statistically significant in all specifications except for model 1.

The estimated coefficients for risk aversion and pro-social attitudes are of

expected sign, but not statistically significant. But a player who chooses R

because of pro-social or risk-loving preferences might not be willing to pay even

a trivial amount to disclose the action, thus it would be more appropriate to

evaluate the effect of these motives using an unconditional decision to choose

R. In round 14 all players who choose R also disclose this action, therefore the

estimated coefficients would be identical to models 1 and 2 in table 4.7. In round

1, however, some players do not disclose their actions, and the choice of the

dependent variable affects results. When disclosure is not taken into account,

pro-social and risk-loving individuals are significantly more likely to choose

R, while the coefficients for farsightedness decrease and become insignificant

(columns 5 and 6 in table 4.7). Thus it seems that players driven by pro-social

or risk-seeking preferences choose R in round 1, but they do not necessarily

disclose their actions, while farsighted players are more likely to choose R and

disclose both in round 1 and in round 14.

Result 6. Participants in LOW who are classified as more farsighted are sig-

nificantly more likely to choose R and disclose this action in rounds 1 and 14.

Risk-loving and pro-social participants are more likely to choose R in round 1.

4.4 Discussion

Overall, we find evidence that there are players who act strategically, and there

also are players who update beliefs based on observed feedback. We find that

many players are willing to pay to make their actions observable, and those

who choose R are much more likely to do so. Strategic motives seem to be

the most likely explanation for such behavior as action disclosure provides no
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monetary benefits in the current round. If disclosures were driven only by the

outcomes in the current round, it would be hard to explain why the frequency

of disclosures is decreasing over time and why less than 20% of players disclose

their actions at the end of block 2 when it costs 2 ECU while 40% disclose at

the start of block 2 when it costs 80 ECU (see figure 4.4). Some disclosures

might be a result of mistakes, but a large gap between disclosures of R and S

and a concentration of disclosures at the start of each block indicate that most

disclosures are not mistakes. We also find that R levels and disclosures of R are

higher and transitions to the efficient equilibrium are more frequent in LOW,

just as predicted by the learning model with sophistication. Evidence for belief

learning provides further support that choosing R following coordination on S

could be part of a payoff maximizing strategy if future earnings are taken into

account. In fact, players who choose R in LOW and disclose it in round 14 on

average earn 69 ECU per round, compared to 63 ECU earned by other players.

In HIGH, however, strategic teaching is not profitable: those who choose R and

disclose on average make only 42 ECU, compared to 54 ECU made by others.

Finally, we find that farsighted players are more likely to initiate revolts and

disclose their actions, while risk and social preferences have a significant effect

only on the R choices in the first round.

However, even as players seem to understand the benefits of having their

actions observed, there are indications for a limited ability to make intertempo-

ral trade-offs. First, higher action disclosure costs discourage action disclosure,

but have only a small direct effect on R levels in round 14. A sophisticated

player would be expected to compare the payoff of choosing R and disclosing

with the payoff of choosing S and not disclosing, and choose R if the former is

larger than the latter. Consequently, higher costs should reduce not only the

tendency to disclose, but also the tendency to choose R. Yet we find that higher

costs discourage only action disclosure, while average R levels are similar both

in round 14 and in the rest of the experiment if differences in beliefs are taken

into account.20 Thus low disclosure costs help overcome coordination failure

mostly through higher observed R levels that alter beliefs. The second issue

is that 60% of players in HIGH who choose R do not disclose their actions.

It may seem that sophisticated players should either choose R and disclose, or

choose S and not disclose. One explanation for choosing R and not disclosing

could be that such choices are driven by non-strategic motives, such as beliefs

20To test the treatment effect we used a probit regression with the chosen action as a dependent
variable and a treatment dummy as the main independent variable while controlling for beliefs. We
find that the estimated likelihood to choose R is about 8 percentage points higher in LOW, and
marginally significant (p-value = 0.093), but the effect disappears if all rounds in which play has
converged to the efficient equilibrium are removed from the analysis (p-value = 0.332).
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or preferences. But sophisticated players could also choose R without disclosing

even if R was not myopically optimal, as long as a sufficiently large probability

is assigned to the event that exactly θ� 1 other group members will choose R.

In such an event one’s decision would be pivotal, and a choice of R would raise

R levels above the threshold, informing other players about the true R levels

via their payoffs.

4.5 Concluding Remarks

This chapter addresses the social dilemma of inefficient conventions: a unilat-

eral deviation from an inefficient convention is costly, even though a collective

deviation would lead to a Pareto improvement. As an example of such inefficient

conventions we use the failure to take political action, but our findings could

be applied to other contexts too. An inefficient technology could become the

standard if it exhibits steep returns to scale (Arthur, 1989); examples of such

technological lock-in include QWERTY keyboard (David, 1985), inferior infor-

mation technology (Shapiro and Varian, 1999) or light water nuclear reactors

(Cowan, 1990). As older technologies are being superseded by new innovations,

it would be desirable to design an environment that would allow the most ef-

ficient technology to become a standard. Our findings may also be applied to

the problems of inefficient social customs (Akerlof, 1980) or inefficient economic

and political institutions (North, 1990; Acemoglu, 2006).

To understand how the efficiency loss could be reduced, it is important to

know what motivates individuals who deviate from an inefficient convention,

and how such deviations could be facilitated. We address these questions by

running a laboratory experiment to determine whether deviations from an in-

efficient convention are explained by strategic motives, and whether such devi-

ations occur more often when players can disclose their actions at a lower cost.

We find evidence supporting the hypothesis that deviations are motivated by

strategic reasons and we also find that inefficient conventions are overcome

only if the cost of action disclosure is sufficiently low. These findings may help

design interventions to facilitate the diffusion of efficient conventions. For exam-

ple, availability of information technology could make it easier to inform others

about one’s action both directly, through social media, and indirectly, through

information shared by other parties. The physical location of the events might

matter too, as a large central space should make it much easier to gauge the

level of support, while also allowing information to be shared much more rapidly

among the participants. However, before implementing any such interventions
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more research has to be done to verify the external validity our findings and to

understand the potential negative effects. For example, advances in information

technology could crowd out physical protests or make it easier for the regime

to use propaganda, censorship or surveillance (Morozov, 2012).
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Appendix 4

4.A Figures
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Figure A.1: Comparison of stated beliefs and the estimated beliefs using a weighted fictitious
play model with parameters that minimise MSD. Graphs by subject in HIGH.
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Figure A.2: Comparison of stated beliefs and the estimated beliefs using a weighted fictitious
play model with parameters that minimise MSD. Graphs by subject in LOW.
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Model 1: Deterministic best-response
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Model 2: Logit best-response

0
.2

.4
.6

0 10 20 30 0 10 20 30

HIGH LOW

Empirical R levels Predicted R levels

F
ra

c
ti
o
n
 c

h
o
o
s
in

g
 R

Round

Graphs by treatment

Model 3: Risk preferences
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Model 4: Pro-social preferences
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Model 5: Farsightedness
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Figure A.3: Comparison of empirical R levels and R levels predicted by each of the six
choice rules.
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4.B Tables

Table A.1: Estimated treatment effect by round, calculated using the estimates of a mul-
tilevel GLS random effects regression and group level data. Standard errors clustered on
group level.

Round 1 2 3 4 5 6 7 8 9 10 11
Coefficient 0.170 0.161 0.152 0.143 0.134 0.125 0.115 0.106 0.097 0.088 0.079
p-value 0.782 0.773 0.761 0.748 0.732 0.713 0.691 0.668 0.652 0.655 0.689

Round 12 13 14 15 16 17 18 19 20 21 22
Coefficient 0.070 0.060 1.429 1.573 1.716 1.860 2.003 2.146 2.290 2.433 2.577
p-value 0.747 0.807 0.228 0.183 0.146 0.116 0.092 0.073 0.058 0.047 0.038

Round 23 24 25 26 27 28 29 30 31 32 33
Coefficient 2.720 2.864 3.007 3.151 3.294 3.438 2.900 2.900 2.900 2.900 2.900
p-value 0.031 0.026 0.022 0.019 0.016 0.015 0.017 0.019 0.021 0.024 0.028

Table A.2: Time trends: estimated p-values for the coefficient of the number of rounds left.

Block HIGH treatment LOW treatment
1 0.0001 0.0000
2 0.0037 0.7351
3 0.0059 0.0410

Table A.3: Random-effects panel data probit regression. Standard errors clustered on the
group level (12 clusters). Dependent variable is equal to 1 if the action is disclosed.

All data Decisions after choosing R
Treatment = LOW 1.128*** 1.227***

(5.25) (3.33)
Action = R 1.742***

(15.48)
Round -0.0517*** -0.0554***

(-9.55) (-7.63)
Constant -2.011*** -0.192

(-10.65) (-0.70)
Observations 2376 545

t statistics in parentheses

* p 0.10, ** p 0.05, *** p 0.01
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Table A.4: Comparison of the two measures used to measure farsightedness: farsightedness
score is based on the number of correct answers, time ratio is calculated as the ratio of time
spent in node 1 relative to time spent in node 2.

Farsightedness score Average time ratio N
0 1.20 25
1 1.35 21
2 1.91 18
3 2.50 8
Total 1.57 72

Table A.5: Three-level nested random effects model and two-level random effects GLS model
(12 clusters). Dependent variable: stated probability that a randomly chosen group member
chose R (from 0 to 100). Standard errors are robust to correlation within the observations
of each group. Observations from rounds in which groups are converged to an equilibrium
are dropped (a group is converged if no player observed two different actions being chosen
in the previous round)

Random effects GLS Nested random effects

Two-period lags One-period lags Two-period lags One-period lags
Observed R in (t-1) 6.723*** 6.815*** 7.074*** 7.051***

(4.96) (3.97) (6.13) (3.87)
Observed R in (t-2) 0.772 1.447

(0.36) (0.66)
Observed S in (t-1) -3.950* -3.019 -4.591** -3.577*

(-1.87) (-1.36) (-2.40) (-1.91)
Observed S in (t-2) 1.110 1.083

(0.36) (0.36)
Actual R level in (t-1) 5.120** 6.680*** 4.767*** 6.508***

(2.40) (5.67) (3.37) (6.52)
Actual R level in (t-2) 1.857 1.231

(0.64) (0.48)
Treatment: 1 = LOW -6.596* -1.813 -6.148* -1.633

0 = HIGH (-1.66) (-0.44) (-1.89) (-0.40)
Constant 17.51*** 16.03*** 17.51*** 16.09***

(3.03) (3.22) (3.44) (3.37)
Observations 192 270 192 270

t statistics in parentheses

* p 0.10, ** p 0.05, *** p 0.01
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4.C Alternative Explanations for the Treatment Dif-
ference

Treatment Farsightedness score Risk preference SVO angle Female Age
High 1.22 5.92 16.85 0.58 21.06
Low 1.03 5.94 22.85 0.47 20.97

Range 0–3 2–10 -7.82 – 53.37 0–1 18–29
Table A.6: Descriptive statistics and their range by treatment

First, participants in the two treatments could differ in terms of their per-

sonal characteristics, which would lead to different responses to beliefs. To

evaluate this possibility we compare the levels of farsightedness, risk and social

preferences and demographic data, which were elicited at the end of the experi-

ment (see section 4.3.3.1 for details). Table A.6 shows that most characteristics

are similar, except for the SVO angle that measures pro-social preferences: sub-

jects in LOW are more pro-social and the difference is marginally significant

(Mann-Whitney U test p-value = 0.0615). If more pro-social participants were

assigned to LOW, this difference could potentially explain the treatment effect

because pro-social players should be more likely to choose R (see Appendix

4.E.4). However, differences in social preferences should increase R levels in all

rounds, while we find that the treatment difference is very small at the start of

block 2, but grows over time. Alternatively, choices in the SVO task could have

been influenced by outcomes in the main part of the experiment. Social prefer-

ence elicitation task was conducted at the end of the experiment and subjects

from groups that coordinated on the efficient equilibrium might have acted in

a more pro-social way, for motives such as reciprocity. Note that differences in

social preferences cannot be explained by direct reciprocity, as subjects were

never matched with their group members from the main part of the experiment,

but they might be explained by generalised reciprocity (see Stanca, 2009, for

evidence of generalised reciprocity).

Second, the process that drives the treatment difference could be reinforce-

ment learning instead of belief learning. If this was the case, separate attractions

could be formed for each of the four strategies in a stage game: ‘choose R and

disclose it’ (R, D), ‘choose R and not disclose’ (R, ND), ‘choose S and disclose’

(S, D) and ‘choose S and not disclose’ (S, ND). If at the start of block 2 there

are no treatment differences between the frequencies with which each strategy

is chosen, payoffs to players who chose (R, D) will be lower in HIGH than in

LOW. Under reinforcement learning the attraction of (R, D) would be reduced

more strongly in HIGH than in LOW. If few players choose (S, D), this would
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reduce R levels in HIGH more than in LOW. However, there is no evidence

that large losses discourage subsequent R choice in HIGH at the start of block

2: players who choose (R, D) in round 14 make -75 ECU in that round, yet

83% of them continue choosing R in round 15; in comparison, those who choose

(R, ND) earn 4 ECU, but only 22% of them choose R in round 15.

Another process that could explain the correlation between observed feed-

back and choices without the need to form beliefs is reciprocity: players who

observe many group members choosing R could receive higher payoffs and they

would be willing to reciprocate by choosing R more often in subsequent rounds.

However, this explanation seems unlikely for several reasons. First, subjects are

always informed about their payoffs, so observed R levels provide no additional

information about one’s earnings. Thus reciprocity should be induced by the

actual R levels rather than the observed R levels. Second, R levels would affect

earnings only if the participation threshold has been exceeded, and therefore

there should be no difference in responses to higher observed R levels as long

as the threshold has not been exceeded. Instead, we find that the effect of ob-

served R levels is continuous: observing one additional group member choosing

R has a positive effect, regardless of the R levels.21 Third, reciprocity should

be driven by subjects who chose R in the previous round because the payoffs

of those who chose S are always fixed. In the probit regression we include a

variable capturing the interaction between choosing R in the previous round

and the observed R levels and find that the estimated coefficient is small and

not significant (p = 0.973), suggesting that those who chose R and those who

chose S are similarly affected by the observed history.

21p-values for the different numbers of observed R are: 0.008 (1 vs 0), 0.150 (2 vs 1), 0.068 (3 vs 2),
0.825 (4 vs 3), 0.000 (5 vs 4)
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4.D Belief Elicitation Task

The belief elicitation task was designed to elicit precise and truthful probabilis-

tic beliefs about the actions of other players. Images of the computer screen

seen by the participants are reproduced in figures A.8 and A.9. Instructions

are reproduced in Appendix 4.G.

To get a precise measure of beliefs we allowed subjects to choose any number

between 0% to 100%, but elicitation was performed in two stages. The first

stage displayed only the outcomes for all multiples of 5 between 0 and 100, and

the second stage displayed the outcomes for the 11 strategies closest to the one

chosen in the first stage (see figures A.8 and A.9 in Appendix 4.H).

To avoid hedging within one round, subjects were paid either their accumu-

lated earnings from 33 rounds of the main part of the experiment, or they were

paid for the belief elicitation tasks. In particular, at the end of the experiment

a random draw was performed, so that with 80% probability a subject was paid

for the main part of the experiment and with 20% probability a subject was

paid for the belief elicitation task (Blanco et al., 2010, used a similar procedure

to avoid hedging). The chances to be paid for the belief elicitation task were

deliberately kept low to further reduce the temptation to hedge. We used a

random-lottery incentive scheme by choosing one round for payment at the end

of the experiment, a procedure that has been shown to avoid the income effect

that appears if earnings are added up (Lee, 2008).

The second issue that may hinder the elicitation of truthful beliefs is risk

preference: for example, risk-averse subjects may avoid reporting beliefs that

are too extreme to lower the risk of receiving a low payment. It has been shown

that deterministic payment schemes, such as the quadratic scoring rule (McK-

elvey and Page, 1990; Nyarko and Schotter, 2002), do not elicit truthful beliefs

if subjects are not risk neutral (Schlag and van der Weele, 2013). Therefore we

used a binarized scoring rule, which should elicit truthful beliefs irrespective of

risk attitudes (Schlag and van der Weele, 2013). Experiments have also shown

that a binarized scoring rule is less influenced by risk attitudes and is closer to

the objective probabilities compared to the quadratic scoring rule (Hossain and

Okui, 2013). The binarized scoring rule was implemented by paying subjects

in lottery tickets instead of monetary earnings. If the belief elicitation task was

chosen for payment, subjects participated in a lottery that yielded either 4000

ECU or 1000 ECU. Better performance in the belief elicitation task therefore

did not affect the size of the earnings, but increased the chances to receive the

higher reward.
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4.E Risk and Social Preferences

4.E.1 Preliminaries

Assume that player i P N chooses action ai P t1, 0u where ai � 1 if R is chosen

and ai � 0 if S is chosen. Define the action profile of all players except for i by

a vector a�i � �jPNztiuaj. The total number of players other than i who chose

action R can be calculated using a dot product: #R � a�i � a�i. The vector

of profits for all players can be expressed as a function of the action taken by

player i and of the total number of other players who choose R:

Πpai,#Rq �

$'''&'''%
t100, 100 � 1#R, 60 � 1n�#R�1u if #R� ai ¥ θ and ai � 1

t60 , 100 � 1#R, 60 � 1n�#R�1u if #R� ai ¥ θ and ai � 0

t5 , 5 � 1#R, 60 � 1n�#R�1u if #R� ai   θ and ai � 1

t60 , 5 � 1#R, 60 � 1n�#R�1u if #R� ai   θ and ai � 0

where 1
x is a vector of ones of length x. The first entry in the profit vector

specifies the profit to player i, the second entry specifies the profits to #R

players who chose R and the third entry specifies the profits for the n�#R�1

players who chose S. Define the payoff to player i as Πipai,#Rq and the payoff

vector of other players as Π�ipai,#Rq.

Define subjective beliefs about the number of other group members who will

choose R by a probability mass function σp#Rq : t0, 1, . . . , n� 1u Ñ r0, 1s.

The expected utility of action ai, conditional on subjective beliefs σ, is:

EUpai, σq �
¸

bPt0,...,n�1u

σpbqupΠpai, bqq

Action R maximizes expected utility if a function that measures the difference

between expected utilities is positive:

dpσ, uq � EUpR, σq � EUpS, σq �
¸

bPt0,...,n�1u

σpbqpupR, bq � upS, bqq ¥ 0 (4.2)

4.E.2 Risk Neutral, Self-interested Players

Self interested players would take into account only their own payoffs, specified

by the first entry of a payoff vector Πpai,#Rq:
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Πipai,#Rq �

$'&'%
100 if ai � 1 and #R ¥ θ � 1

5 if ai � 1 and #R   θ � 1

60 if ai � 0

(4.3)

For risk neutral players utility is equal to payoffs: upΠipai,#Rqq � Πipai,#Rq.

Substitute (4.3) into (4.2) and define Prp#R ¥ θ� 1q �
°n

b�θ�1 σpbq to get:

dpσ, uq ¥ 0 ô

Prp#R ¥ θ � 1q � 40� p1� Prp#R ¥ θ � 1qq � p�55q ¥ 0 ô

Prp#R ¥ θ � 1q ¥
11

19
(4.4)

A risk neutral player will choose R if and only if he assigns a probability of

at least 11
19

to the event that the participation threshold will be exceeded.

4.E.3 Risk Attitudes

Now suppose that players are not necessarily risk neutral. Define vpxq satisfying

v1pxq ¡ 0 as the utility of receiving x, and use (4.3) to calculate utility:

upai,#Rq �

$'&'%
vp100q if ai � 1 and #R ¥ θ � 1

vp5q if ai � 1 and #R   θ � 1

vp60q if ai � 0

(4.5)

Note that if σp�q is degenerate, there is no strategic uncertainty and thus the

strict monotonicity of vp�q ensures that the shape of the utility function will not

affect the optimal choice. If σp�q is not degenerate and Prp#R ¡ θ�1q P p0, 1q,
R will be the optimal action if:

dpσ, uq ¥ 0 ô

Prp#R ¥ θ�1q�pvp100q�vp60qq�p1�Prp#R ¥ θ�1qq�pvp5q�vp60qq ¥ 0 ô

Prp#R ¥ θ � 1q
1� Prp#R ¥ θ � 1q

vp100q � vp60q
vp60q � vp5q

¥ 0 (4.6)

Consider two utility functions, v1pxq and v2pxq such that v1 exhibits higher

risk aversion
�
�v21 pxq

v11pxq
¡ �v22 pxq

v12pxq

	
. Then v1p100q�v1p60q

v1p60q�v1p5q
  v2p100q�v2p60q

v2p60q�v2p5q
(Pratt, 1964)

and therefore dpσ, v1q   dpσ, v2q.

We conclude that players with lower risk aversion coefficients are weakly

more likely to choose R, holding other factors constant.
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4.E.4 Social Preferences

Suppose that utility depends not only on own earnings πi, but also on the

earnings of all other group members. In particular, assume that the utility

function is separable and can be written the following way:

uipai, a�iq � Πipai,#Rq � αvpΠ�ipai,#Rqq

where vp�q captures the effect of the payoffs received by other group mem-

bers. We assume that ∇1pvpπ1, π2, . . . , πn�1qq ¥ 0, that is vpΠ�ipai,#Rqq
does not decrease if there is no other player whose payoff decreased. A

selfish player would be characterised by α � 0, and would take into ac-

count only his own payoff. Players with α ¡ 0 would be pro-social

and those with α   0 would be anti-social. If α ¡ 0, altruism could

be modeled by setting vp�q �
°
p�q, maximin preferences could be mod-

eled by setting vp�q � minp�q. R is optimal if the following holds:

dpσ, uq �¸
bPt0,...,n�1u

σpbqpΠipR, bq � αvrΠ�ipR, bqsq �
¸

bPt0,...,n�1u

σpbqpΠipS, bq � αvrΠ�ipS, bqsq �¸
bPt0,...,n�1u

σpbqpΠipR, bq �ΠipS, bqq � α
¸

bPt0,...,n�1u

σpbqpvrΠ�ipR, bqs � vrΠ�ipS, bqsq

The first term is not affected by social preferences because it includes only

the earnings of player i. Notice that Π�ipR, bq ¥ Π�ipS, bq, @b P t1, . . . , n� 1u,
that is payoffs received by other group members are at least as high when i

chooses R as when i chooses S. Also, Π�ipR, θ � 1q ¥ Π�ipS, θ � 1q, because

if a person is pivotal, choosing R would lead to the threshold being exceeded

and would therefore provide higher payoffs for those group members who chose

R, compared to the case if S was chosen. Thus if a positive weight is given

to the event that θ � 1 others will choose R, as we have assumed, the second

term would be increasing in α. The value of dpσ, uq would be higher for players

who are more pro-social, defined by higher values of α, thus for such players R

would be optimal under a broader set of parameter values.

Note that the positive effect of pro-social preferences on R choice holds only

if players make deterministic choices. If choices are stochastic and depend on

the payoff difference, increased pro-sociality may decrease the payoff difference

between R and S, making R less likely to be chosen.
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4.F SVO Slider Measure Tasks
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Figure A.4: Six allocation tasks of the Slider measure (solid lines) and the additional task
(dashed line). Each line represents one allocation task, in which subjects choose one of the
9 allocations on the line.
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4.G Instructions

Instructions were identical for treatments HIGH and LOW, except for the dis-

closure costs. We highlight this difference below.

INSTRUCTIONS

Welcome to the experiment. Please read the instructions carefully and take as

much time as you need. The instructions are identical for all the participants

with whom you will interact during this experiment.

If you have any questions please raise your hand. One of the experimenters

will come to you and answer your questions. From now on communication with

other participants is not allowed. If you do not conform to these rules you will

be excluded from the experiment with no payment. Please also switch off your

mobile phone at this moment.

In this experiment you can earn some money. How much you earn depends on

your decisions and the decisions of the other participants. During the experi-

ment we will refer to ECU (Experimental Currency Unit) instead of Euro. The

total amount of ECU that you will have earned during the experiment will be

converted into Euro at the end of the experiment and paid to you in cash con-

fidentially. In this experiment the conversion rate that will be used to convert

your ECU earnings into your Euro cash payment is: 250 ECU = 1 euro.

Overview

This experiment consists of multiple rounds. At the start of the

experiment you will be randomly matched with 5 other partici-

pants. The group will remain constant throughout the experiment

so you will interact with the same 5 other participants in all rounds. All

other participants will face the same decision task as you, and you will not

know the identity of each other. Every round consists of two tasks, a Decision

Task and a Guess Task. You will do both tasks in every round, but you will

be paid either for Decision Tasks or for the Guess Tasks. At the end of the

experiment it will be randomly determined whether your payment is based on

the Decision Tasks or on Guess Tasks. There is a chance of 4 out of 5 that

your payment will be based on the Decision Tasks and a chance of 1 out of 5

that your payment will be based on the Guess Tasks.

Next we will describe what you have to do in each of the tasks.
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Decision Task

• Your initial balance at the start of round 1 is 400 ECU.

• In each round you will have to choose either action A or action B.

• If you choose action B, your round income will be 60 ECU.

• If you choose action A, your round income depends on decisions of other

participants in your group. If x or more others (not including yourself)

choose A, your round income will be 100 ECU. If less than x others choose

A, your round income will be 5 ECU. For example, if x � 2, your round

income will be 5 ECU if 0 or 1 other participant chooses A and your round

income will be 100 ECU if 2,3,4 or 5 other participants choose A.

• The rounds will be grouped into a certain number of blocks. At the start

of a block you will be informed about the number of rounds that the block

contains and the value of x in that block. The value of x will stay the

same in every round of the block, and you will be reminded about the

value of x in every round.

• Everyone will make decisions at the same time, so you will not know the

decisions of other participants before making your own decision.

Table 1 summarizes your choices and possible round income in the Decision

Task.

Your choice Your income if x or more
other participants choose A

Your income if less than x
other participants choose A

A 100 5
B 60 60

Table 1: Round income for the Decision Task (in ECU)

Making your action public or hidden

• After choosing an action in the Decision Task you will have to choose if

you want to make this action public or if you want to make it hidden.

• If you make your action public, all other participants in your group will

be informed about the action (A or B) that you chose in the Decision

Task, but only after the Guess Task has been completed. If you make
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your action hidden, other participants will not know your action in the

Decision Task.

• Making your action public will cost you 80 ECU [2 ECU]. Making your

action hidden will cost you 1 ECU. This amount will be subtracted from

your round income. If your round income is not sufficient to cover these

costs, the difference will be subtracted from the initial balance or from

your income in other rounds.

• Making your action public or hidden will affect only the information that

others see, but it will not affect their income. Likewise, your income will

not be affected by whether other participants in your group made their

actions public or hidden.

Guess Task

• In the Guess Task you will be asked to guess what action, A or B, some

other participant in your group chose in the Decision Task. We ask you to

report your Guess on a scale from 0 to 100, where 0 means that you are sure

the other participant chose B and 100 means that you are sure that the

other participant chose A. The participant whose action you have to guess

(call him other participant) will be randomly chosen by the computer. All

5 other participants in your group have equal chances to be chosen.

• You will not earn any ECU from the Guess Tasks, but you will earn some

lottery tickets. If your payment is based on the Guess Tasks, at the end

of the experiment you will play a lottery in which you will receive either

4000 ECU or 1000 ECU. The probability to receive 4000 ECU will depend

on the number of tickets that you received in one of the Guess Tasks.

Which Guess Task is used will be determined randomly by the computer

and every Guess Task has an equal chance of being selected.

• The exact way how the number of lottery tickets depends on your Guess

and on the action of the other participant in the Decision Task is shown

in Table 2. If you guess 0, you will receive 4000 ECU for sure if the

other participant chose B and will receive 1000 ECU for sure if the other

participant chose A. If you guess 100, you will receive 4000 ECU for sure

if the other participant chose A and will receive 1000 ECU for sure if the

other participant chose B. All other Guesses give a positive probability to

receive either sum. Notice that as you increase your Guess, you receive
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more tickets if the other participant chose A but receive less tickets if the

other participant chose B.

• Notice that Table 2 lists the payoffs only for the multiples of five, but you

are free to choose any number between 0 and 100. To make it easier to

choose, we will first ask you to choose a multiple of five, and then allow

you pick a more precise Guess by showing earnings for 11 numbers closest

to the one you picked. For example, if in the first table you choose number

50, you will be given numbers 45-55 to choose from in the second table.

Your Guess Number of lottery tickets that you
will receive if other participant
chose A in the Decision Task

Number of lottery tickets that you
will receive if other participant
chose B in the Decision Task

0 0.00 100.00
5 9.75 99.75
10 19.00 99.00
15 27.75 97.75
20 36.00 96.00
25 43.75 93.75
30 51.00 91.00
35 57.75 87.75
40 64.00 84.00
45 69.75 79.75
50 75.00 75.00
55 79.75 69.75
60 84.00 64.00
65 87.75 57.75
70 91.00 51.00
75 93.75 43.75
80 96.00 36.00
85 97.75 27.75
90 99.00 19.00
95 99.75 9.75
100 100.00 0.00

Table 2: Number of lottery tickets received in the Guess Task

• Your choice in the Guess Task only affects your payoff. It does not affect

the payoffs of other participants.

What you will see at the end of a round

After both the Decision Task and the Guess Task have been completed, you

will see the following information on the screen:

• Your choice in the Decision Task

• The number of other participants in your group who chose action A and

made it public

• The number of other participants in your group who chose action B and

made it public
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80% 20%

Sum of earnings

from Decision Tasks

Play a lottery

p% (100 – p)%

4000 ECU 1000 ECU

Your earnings

Figure 1. How your earnings from Part 1 will be determined. p is the number of lottery tickets
that you got from one randomly chosen Guess Task.

• The number of other participants in your group who made their action

hidden

• Your payoff from the Decision Task

You will not know the choices of participants who made their choices hidden.

Information about your choices and choices of other participants in previous

rounds will always be available on the right side of your computer screen.

You will not receive any feedback about the Guess Task. The choice of a

randomly selected participant and the number of lottery tickets that you earned

in every round will be displayed at the end of the experiment.

How your cash earnings will be determined

At the end of the experiment it will be randomly determined whether you are

paid for the Decision Tasks or for the Guess Tasks. There is a chance of 4 out

of 5 that you will be paid for Decision Tasks and there is a chance of 1 out of

5 that you will be paid for Guess Tasks. Note that if you are paid for Decision

Tasks, your choices in the Guess Task will not influence your final earnings. If

you are paid for Guess tasks, you will not receive the earnings that you made

in the Decision tasks.

If your payment is based on Decisions Tasks, your final earnings will be deter-

mined by adding your round income from all Decision Tasks to the initial bal-

ance of 400 ECU.
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If your payment is based on Guess Tasks, your total earnings will be either

4000 ECU or 1000 ECU. Which sum you will receive will be determined by

spinning a virtual Lottery Wheel. The Lottery Wheel will have two sectors,

Red and Blue, and will randomly stop in one of them. If the Lottery Wheel

stops in the Red sector, you will receive 4000 ECU; if it stops in the Blue sector,

you will receive 1000 ECU. The size of the Red sectors will be determined by

the number of lottery tickets that you received in one Guess Task. For exam-

ple, if you earned p lottery tickets, p% of the lottery wheel will be colored Red

and the remaining (100 � p)% will be colored blue. Therefore the probability

that you will receive 4000 ECU will be p% and the probability that you will

receive 1000 ECU will be (100� p)% . Which Guess Task is used to determine

the size of the Red sector will be determined randomly by the computer and

all Guess Tasks have equal probability to be selected. The spin of the virtual

Lottery Wheel will be performed on your computer screen at the end of the

experiment.

How it will be determined if you are paid for the Decision Tasks or

for the Guess Tasks

At the end of the experiment we will ask you to choose a number between 1

and 5. Afterwards we will ask one participant in this room to randomly draw

one card out of 5 cards, numbered from 1 to 5. The draw will be public, so

everyone will be able to observe what number has been drawn. If the drawn

number is the same as the number that you entered, your payment will be based

on the Guess Tasks. If the drawn number is different from the one that you

have entered, your earnings will be based on the Decision Tasks.

What you will see at the end of the experiment

At the end of the experiment you will be informed about the choices of all

participants in all rounds and your earnings from all Decision Tasks and all

Choice Tasks. You will see if you are paid for the Decision Tasks or for the

Guess Tasks. If you are paid for the Guess Tasks, you will see the result of a

virtual Lottery Wheel spin.

After you have made decisions in all rounds, but before seeing the final feedback

screen you will have to do some additional tasks in which you will have a chance

to earn more ECU. Instructions for these additional tasks will be shown on your

computer screen. After these tasks you will see your total earnings from the

experiment. We will also ask you to complete a short questionnaire. After

completing the questionnaire, please stay seated until we ask you to come to

receive your earnings from the experiment. Your earnings will be paid in cash
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and in private.

If you have any further questions, please raise your hand now.

In order to ensure that everybody has understood the instructions, we will ask

you to answer a few questions. Please click a button on your computer screen

to start answering these questions.
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4.H Screenshots

Figure A.5: First part of the questionnaire that had to be answered before subjects could
start the experiment.

Figure A.6: Second part of the questionnaire that had to be answered before subjects could
start the experiment. Values for the first question were generated randomly.
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Figure A.7: Action choice stage

Figure A.8: First part of the belief elicitation task
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Figure A.9: Second part of the belief elicitation task

Figure A.10: Decision tree 1 from the task measuring farsightedness.
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Figure A.11: Decision tree 2 from the task measuring farsightedness.

Figure A.12: Decision tree 3 from the task measuring farsightedness.



Chapter 5

Conclusion

The theme that unites the chapters in this thesis is feedback and its role in the

learning process. The main question addressed here is whether better quality

and quantity of feedback can help reduce the welfare loss that occurs when

individuals are choosing dominated strategies in contests or when groups con-

verge to an inefficient equilibrium in coordination games. If better feedback can

help solve these problems, interventions that improve observed feedback could

be easily implemented at a low cost, especially given the increasing use of the

Internet, mobile devices and social media that make finding or sharing infor-

mation easier than ever. Technological advances also make it easy for policy

makers to shape the information received by the players, while other elements

of the game, such as payoffs, order of moves or group size, are much harder to

manipulate.

Overall, this thesis shows that better feedback can help reduce the efficiency

loss. In chapter 2 we show that in contests dominated strategies are chosen less

often and theoretical best response is chosen more often if the prize allocation

is not probabilistic, if players know the action of the other participant and

if there are opportunities to learn an optimal response. When one of these

elements is missing, behavioral variation goes up and the explanatory power

of Nash equilibrium goes down. The next challenge is to understand the exact

mechanism that leads to the changes in explanatory power. One possibility

is that matching players to computers and paying the expected value of the

gamble lowers the risk and eliminates payoff consequences imposed on other

players, which may lead to a difference in behavior if players have risk or social

preferences. However, we show that such preferences cannot explain the large

behavioral variation and low explanatory power typically found in contests and

it is unlikely that such preferences are behind the treatment difference. An
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alternative explanation is that lower complexity leads to more accurate feedback

and makes it easier to find the best response. To further test this hypothesis one

would need to design a contest in which feedback is improved without changing

other elements of the game. One way to do so is by providing information about

the payoffs that would have been generated by choosing a different action. This

foregone payoff information should make it easier to directly compare different

strategies and would also provide a larger quantity of information.

Chapter 3 shows that strategic players may deviate from an inefficient equi-

librium solely for the information that such deviation conveys to other group

members. A theoretical model presented in chapter 3 predicts that strategic

players would be more likely to deviate from the inefficient equilibrium if they

had a longer planning horizon or if the history of inefficient coordination was

shorter, while player composition has an ambiguous effect. Overall, chapter 3

shows how game-theoretic approach can be combined with a learning model to

narrow down the predictions of standard game-theoretic solution concepts. The

chapter also demonstrates that a social dilemma that occurs due to convergence

to an inefficient equilibrium can be solved even if all players are rational and

self-interested. In other words, it is not necessary to assume social preferences

because farsighted players who anticipate how others are learning could deviate

from an inefficient convention for their own self-interest.

Players who deviate from inefficient conventions to improve future payoffs

may be willing to pay to make their actions visible, and a policy maker may be

able to facilitate the transition process by decreasing the cost of action disclo-

sure. An experiment reported in chapter 4 finds evidence for both hypotheses:

players are willing to disclose their actions even when doing so is costly, and

the tendency to do so is much higher for those who deviate from an inefficient

equilibrium. Players who have a longer planning horizon are also more likely

to deviate from an inefficient convention and to disclose this action, while the

effect of risk and social preferences is not significant. Finally, we find that

half of the groups move from an inefficient to the efficient equilibrium when

disclosure costs are low, but no groups do so when the costs are high, even

though groups in both treatments experience a similar pattern of coordination

failure. All groups that move to the efficient equilibrium remain there even

when the participation threshold is increased back to its original level. These

findings show that the efficiency loss which occurs from convergence to an inef-

ficient equilibrium can be lowered by temporarily decreasing the participation

threshold, as long as players are able to disclose their actions at a low cost.



Addendum: Valorization

This final chapter discusses the valorization opportunities of this thesis, in

accordance with article 23.5 of the “Regulation governing the attainment of

doctoral degrees” of Maastricht University. Knowledge valorization refers to

the “process of creating value from knowledge, by making knowledge suitable

and/or available for social (and/or economic) use and by making knowledge

suitable for translation into competitive products, services, processes and new

commercial activities” (adapted definition based on the National Valorization

Committee). This section will discuss the broader implications and potential

practical uses of the findings presented in this thesis. One should of course take

these suggestions with caution and keep in mind that most findings come from

experiments with small student samples in a laboratory setting. It is therefore

not clear whether the interventions that work in experiment could be general-

ized. One should also carefully consider the potential negative side effects of

the proposed suggestions.

The thesis uses theory and experiments to understand why an efficiency loss

occurs and how it can be minimized in two types of situations. This chapter

will briefly review the main findings and will show how these findings could be

used by policy makers, managers or consumers.

Chapter 2 addresses the efficiency loss that occurs because of the choice of

dominated strategies in a contest game. In contest experiments two parties

compete for a fixed prize my making costly investments and the probability to

receive the prize is proportional to the investments. There is robust experimen-

tal evidence that in such contests players often invest more than they should

according to theoretical predictions. In some situations such overinvestments

may be desirable while in others they may not be. If firms are competing for

the the market share by investing in R&D, overinvestments may be beneficial

to the society. Likewise, the chances that a worker will receive a bonus may be

increasing in their effort and employers may attempt to design a system that

maximizes the effort exerted by all workers. In other circumstances investments
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may be wasteful, such as when politicians are competing in elections and when

firms are investing in advertising or lobbying. Knowledge about the factors

that affect investments could enable policy makers and managers to influence

investments in a desirable way. For example, chapter 2 shows that when the ac-

tions of the other participant are know, subjects with higher cognitive abilities

invest less than those with lower abilities.

However, chapter 2 shows that overinvestments are in large part a reflection

of behavioral variability and noise that are present in contests. In fact, a Tullock

contest is a good example of a game in which subjects make a clear mistake,

which could not be explained by preferences or beliefs. More than half of the

time players choose dominated strategies – these are strategies that generate

lower earnings that some other strategy, regardless of what other players will

choose – and there is high behavioral variability. Tools that could reduce the

behavioral variability and increase the frequency of optimal strategies might

also be used to improve decisions in other settings. We do find that in some

treatments subjects with higher cognitive abilities perform better, but improv-

ing cognitive abilities is not an easy task and the computational complexity

required to identify dominated strategies is so high that even those with the

highest cognitive abilities are unable to perform it. A much easier way to avoid

mistakes is by learning: subjects who track choices and payoffs, either their own

or those made by others, could identify payoffs that lead to poor payoffs and

avoid them. We find that when the complexity of the game is reduced, most

people learn to play optimal strategies. For this to happen, three elements are

of particular importance: subjects must be able to anticipate what others will

choose, receive accurate feedback about their choices and they must be able to

learn over time. If any of these elements is missing, the frequency of mistakes

(i.e. choice of dominated strategies) and noise (i.e. behavioral variation) go up

significantly.

These findings could be used to improve the quality of feedback that hin-

ders learning. In fact, there already are programmes that aim to do that.

Energy bills that compare current expenses to those in the past, as well to

the performance of other households, have been shown to reduce expenditures

(Allcott, 2011). Failure to understand probabilistic statements in medical de-

cision making have lead to information being presented in formats that are

easier to understand (Bornstein and Emler, 2001). Chapter 2 also shows that

when conditions are suitable for learning, subjects are more likely to sample

different actions when doing so is costless. Experimentation could therefore

be another element that is necessary for learning. Decision makers who never
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change their habits might never try better alternatives, and would therefore

never learn about their superiority.

The second problem addressed in this thesis is the emergence of inefficient

conventions, which may be implemented in situations with multiple alternative

stable states. Multiplicity of stable states can occur because of strategic comple-

mentarity: for example, a person may cycle to work, recycle, pay taxes or avoid

littering only if he expects that others will behave the same way. Incentives

to coordinate on a common action drives choices towards one of the two stable

states, and it is possible that an inefficient state will be implemented. Once this

happens, an inefficient convention is hard to replace even if everyone involved

would prefer a collective switch to the efficient convention. The understanding

that the current situation is inefficient is not enough – participants must also

expect sufficiently many others to deviate from an inefficient convention. For

example, cycling might be dangerous if car drivers are not used to seeing cyclists

on the road, making it hard to promote cycling even if everyone knew about its

benefits and would willingly cycle to work as long as others do the same. To

promote desirable actions a policy maker should therefore not only convince the

public about its benefits, but also attempt to structure the environment in a

way that increases the likelihood of efficiency-enhancing transitions. This thesis

aims to increase our understanding about the ways how inefficient convention

can be replaced, using both theory (chapter 3) and experiments (chapter 4).

Chapter 3 provides a framework that can be used to analyze situations

in which an inefficient convention has been established. The model makes

predictions about the types of symmetric equilibria that exist in a given game,

and shows how these existence conditions can be calculated from the game

parameters. It also shows how these existence conditions are affected by changes

in parameter values. While some of the findings are intuitive – for example,

a transition to the efficient state is more likely and faster if players have a

longer planning horizon, other results are more surprising. If the number of

sophisticated players is too large, chances of a transition may even decrease

because each sophisticated player may find free-riding more attractive.

Chapter 4 studies inefficient conventions using an experiment. An important

finding of this chapter is that farsighted players tend to deviate from inefficient

conventions more often. This finding reinforces the results from chapter 3 and

shows that a group can move from the inefficient to the efficient state if it

has some sophisticated players. This could be potentially useful for managers,

as coordination failure is not uncommon when output depends on the effort

put in by the slowest member in the group. If a team gets stuck it in an
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inefficient state, the presence of several farsighted players may help turn it

around. Farsightedness could therefore be one of the criteria used to assign

players into teams and allocate their roles.

One question that guided the design of the experiment presented in chapter

4 was the role of information technology in facilitating protest movements.

Finding ways to help citizens in oppressed countries rise up against the regime

could affect millions of people. If findings from chapter 4 could be taken at face

value, uprisings could be facilitated by allowing citizens to make their actions

observable. Information technology is certainly one possibility, as it enables

the use of social media to communicate with each other at a low cost. But

other tools that increase the observability could be effective too. Any accurate

information about the current events might improve the participation levels,

and such information is often lacking in the absence of free media. Protest

movements might therefore be supported by providing better information or

by improving the existing media channels. Interventions that seek to improve

the quality and quantity of information that is available to the participants are

rather easy to implement, which is one of the reasons why they were chosen to

be studied in this thesis. It might not be possible to change the payoffs of the

citizens, the order of moves or the group size, but interventions that provide

better information or better tools for information sharing could be implemented

easily and at a low cost.
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Huck, S. and Weizsäcker, G. (1999). Risk, complexity, and deviations from

expected-value maximization: Results of a lottery choice experiment. Journal

of Economic Psychology, 20(6):699–715.



154 BIBLIOGRAPHY

Hyndman, K., Ozbay, E. Y., Schotter, A., and Ehrblatt, W. Z. (2012). Con-

vergence: an experimental study of teaching and learning in repeated games.

Journal of the European Economic Association, 10(3):573–604.

Hyndman, K., Terracol, A., and Vaksmann, J. (2009). Learning and sophisti-

cation in coordination games. Experimental Economics, 12(4):450–472.

Johnson, E., Camerer, C., Sen, S., and Rymon, T. (2002). Detecting failures of

backward induction: Monitoring information search in sequential bargaining.

Journal of Economic Theory, 104(1):16–47.

Kahneman, D. and Tversky, A. (1972). Subjective probability: A judgement of

representativeness. Cognitive Psychology, 3(3):430–454.

Kalai, E. and Lehrer, E. (1993). Rational learning leads to nash equilibrium.

Econometrica, pages 1019–1045.

Kalathil, S. and Boas, T. C. (2003). Open networks, closed regimes: The impact

of the Internet on authoritarian rule. Carnegie Endowment.

Kedzie, C. (1997). Communication and democracy: Coincident revolutions and

the emergent dictators. RAND Dissertation.

Keser, C., Suleymanova, I., and Wey, C. (2012). Technology adoption in mar-

kets with network effects: Theory and experimental evidence. Information

Economics and Policy, 24(3-4):262–276.

Kogan, S., Kwasnica, A. M., and Weber, R. A. (2011). Coordination in the

presence of asset markets. American Economic Review, 101(2):927–947.

Konrad, K. (2009). Strategy and Dynamics in Contests. Oxford University

Press.

Lee, J. (2008). The effect of the background risk in a simple chance improving

decision model. Journal of Risk and Uncertainty, 36(1):19–41.

Lewis, D. (1969). Convention: A philosophical study. John Wiley & Sons.

Lim, W., Matros, A., and Turocy, T. L. (2014). Bounded rationality and

group size in tullock contests: Experimental evidence. Journal of Economic

Behavior & Organization, 99:155–167.

Lohmann, S. (1993). A signaling model of informative and manipulative polit-

ical action. The American Political Science Review, 87(2):319.



BIBLIOGRAPHY 155

Lohmann, S. (1994). The dynamics of informational cascades: The monday

demonstrations in leipzig, east germany, 1989-91. World Politics, 47(01):42–

101.

Lohmann, S. (2000). Collective action cascades: An informational rationale for

the power in numbers. Journal of Economic Surveys, 14(5):655–684.

Lynch, M. (2011). After egypt: The limits and promise of online challenges to

the authoritarian arab state. Perspectives on Politics, 9(02):301–310.

Mailath, G. J. (1998). Do people play nash equilibrium? lessons from evolu-

tionary game theory. Journal of Economic Literature, pages 1347–1374.

Mak, V. and Zwick, R. (2010). Investment decisions and coordination problems

in a market with network externalities: An experimental study. Journal of

Economic Behavior & Organization, 76(3):759–773.

McKelvey, R. D. and Page, T. (1990). Public and private information: An

experimental study of information pooling. Econometrica, 58(6):13–21.

Meier, P. (2011). Do liberation technologies change the balance of power between

repressive states and civil society? PhD thesis, The Fletcher School of Law

and Diplomacy.

Mengel, F. (2014). Learning by (limited) forward looking players. Journal of

Economic Behavior & Organization, 108:59–77.

Milgrom, P. and Roberts, J. (1991). Adaptive and sophisticated learning in

normal form games. Games and economic Behavior, 3(1):82–100.

Millner, E. and Pratt, M. (1989). An experimental investigation of efficient

rent-seeking. Public Choice, 62(2):139–151.

Monderer, D. and Shapley, L. S. (1996). Fictitious play property for games

with identical interests. journal of economic theory, 68(1):258–265.

Morozov, E. (2012). The net delusion: The dark side of Internet freedom.

PublicAffairs.

Mourtada, R. and Salem, F. (2011). Civil movements: The impact of facebook

and twitter. Arab Social Media Report, 1(2):1–30.

Murphy, R. O., Ackermann, K. A., and Handgraaf, M. J. (2011). Measuring

social value orientation. Judgment and Decision Making, 6(8):771–781.



156 BIBLIOGRAPHY

North, D. C. (1990). Institutions, institutional change and economic perfor-

mance. Cambridge university press.

Nyarko, Y. and Schotter, A. (2002). An experimental study of belief learning

using elicited beliefs. Econometrica, 70(3):971–1005.

Offerman, T., Sonnemans, J., and Schram, A. (1996). Value orientations, expec-

tations and voluntary contributions in public goods. The Economic Journal,

106(437):817.

Perea, A. (2007). A one-person doxastic characterization of nash strategies.

Synthese, 158(2):251–271.

Peters, E., Dieckmann, N., Dixon, A., Hibbard, J., and Mertz, C. (2007). Less is

more in presenting quality information to consumers. Medical Care Research

and Review, 64(2):169–190.

Potters, J., De Vries, C., and Van Winden, F. (1998). An experimental ex-

amination of rational rent-seeking. European Journal of Political Economy,

14(4):783–800.
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